兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( ) A.11.5米 B.11.75米 C.11.8米 D.12.25米 |
|
如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为( ) A.12m B.10m C.8m D.7m |
|
如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是( ) A.24m B.25m C.28m D.30m |
|
根据图中尺寸(AB∥A′B′),那么物像长y(A′B′的长)与物高x(AB的长)的函数图象是( ) A. B. C. D. |
|
在△ABC中,∠C=90°,AC=6,BC=8,M是BC的中点,P为线段AB上的一个动点(可以与A、B重合),并作∠MPD=90°,PD交BC(CB延长线或BC的延长线)于点D. (1)记BP的长为x,△BMP的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围; (2)是否存在这样的点P,使得△MPD与△ABC相似?若存在,请求出x的值;若不存在,请说明理由. |
|
如图,四边形ABCD、CDEF、EFGH都是正方形. (1)△ACF与△GCA相似吗?说说你的理由; (2)求∠1+∠2的度数. |
|
如图,已知△ABC中CE⊥AB于E,BF⊥AC于F, (1)求证:△AFE∽△ABC; (2)若∠A=60°时,求△AFE与△ABC面积之比. |
|
已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,. (1)求AC的长; (2)求EG的长. |
|
如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交AB边于E,连接CE.请找出DE、AE、CE之间的等量关系并加以证明. |
|
如图,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD⊥CD,AD=3,AB=4,求边BC的长. |
|