如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由. |
|
如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=______°,BC=______ |
|
如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. |
|
如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB. (1)求sin∠ABC的值; (2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似? (3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由. |
|
如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. |
|
我们已经知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形. 现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形.请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由. |
|
在矩形ABCD中,AB=14,BC=8,E在线段AB上,F在射线AD上. (1)沿EF翻折,使A落在CD边上的G处(如图1),若DG=4, ①求AF的长; ②求折痕EF的长; (2)若沿EF翻折后,点A总在矩形ABCD的内部,试求AE长的范围. |
|
如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点. (1)求证:四边形AECG是平行四边形; (2)若AB=4cm,BC=3cm,求线段EF的长. |
|
如图,把一张标准纸一次又一次对开,得到“2开”纸,“4开”纸,“8开”纸,“16开”纸….已知标准纸的短边长为a. (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠: 第一步:将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE; 第二步:将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF. 则AD:AB的值是______ |
|
(1)如图,在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,且EF交BC于点F,某学生在研究这一问题时,发现如下事实: ①当时,有; ②当时,有; ③当时,有. 当时,参照上述研究结论,请你猜想用k表示EF的一般结论,并给出证明; (2)现有一块直角梯形田地ABCD(如图所示),其中AB∥CD,AD⊥AB,AB=310米,DC=170米,AD=70米.若要将这块地分割成两块,由两农户来承包,要求这两块地均为直角梯形,且它们的面积相等.请你给出具体分割方案. |
|