如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是( ) A. B. C. D. |
|
视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E”之间的变换是( ) A.平移 B.旋转 C.对称 D.位似 |
|
如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是( ) A.1:2 B.1:4 C.1:5 D.1:6 |
|
如图所示,将△ABC的三边分别扩大一倍得到△A1B1C1,(顶点均在格点上),它们是以P点为位似中心的位似图形,则P点的坐标是( ) A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4) |
|
如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是( ) A.AD平分∠BAC B.EF=BC C.EF与AD互相平分 D.△DFE是△ABC的位似图形 |
|
在平面直角坐标系中有两点A(6,2)、B(6,0),以原点为位似中心,相似比为1:3,把线段AB缩小,则过A点对应点的反比例函数的解析式为( ) A. B. C. D. |
|
请你说清楚所有的正方形都相似的道理. |
|
善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗? 问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似? (1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似; (2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明) 问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似? (1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明) (2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由; (3)一般结论:对于任意梯形(如图③),一定______(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是=______ |
|
如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4. (1)求AD的长; (2)求矩形DMNC与矩形ABCD的相似比. |
|
已知,如图,在直角坐标系中,矩形OABC的对角线AC所在直线解析式为y=-x+1. (1)在x轴上存在这样的点M,使AMB为等腰三角形,求出所有符合要求的点M的坐标; (2)动点P从点C开始在线段CO上以每秒个单位长度的速度向点O移动,同时,动点Q从点O开始在线段OA上以每秒1个单位长度的速度向点A移动.设P、Q移动的时间为t秒. ①是否存在这样的时刻2,使△OPQ与△BCP相似,并说明理由; ②设△BPQ的面积为S,求S与t间的函数关系式,并求出t为何值时,S有最小值. |
|