如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c. 阅读理【解析】 (1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周; (2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周. 实践应用: (1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周; (2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转______周. 拓展联想: (1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由; (2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数. |
|
已知△ABC在平面直角坐标系中的位置如图所示. (1)分别写出图中点A和点C的坐标; (2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′; (3)求点A旋转到点A′所经过的路线长(结果保留π). |
|
如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=,∠A=30度. (1)求劣弧的长; (2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线. |
|
每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图. (1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标; (2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长. |
|
如图(1),∠ABC=90°,O为射线BC上一点,OB=4,以点O为圆心,BO长为半径作⊙O交BC于点D、E. (1)当射线BA绕点B按顺时针方向旋转多少度时与⊙O相切?请说明理由; (2)若射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点(如图(2)),MN=,求的长. |
|
如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°. (1)试判断直线CD与⊙O的位置关系,并说明理由; (2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号) |
|
如图,AB是⊙O的直径,∠BAC=45°,AB=BC. (1)求证:BC是⊙O的切线; (2)设阴影部分的面积分别为,a,b,⊙O的面积为S,请直接写出S与a,b的关系式. (答案不唯一) |
|
如图,已知PA、PB切⊙O于A、B两点,连AB,且PA,PB的长是方程x2-2mx+3=0的两根,AB=m.试求: (1)⊙O的半径; (2)由PA,PB,围成图形(即阴影部分)的面积. |
|
如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°. (1)求∠A的度数; (2)若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积. |
|
如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm. (1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切? (2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积. |
|