从正面观察下图的两个物体,看到的是( ) A. B. C. D. |
|
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2. (1)求A、B、C三点的坐标; (2)求此抛物线的表达式; (3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围; (4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由. |
|
AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合. (1)求证:△AHD∽△CBD; (2)连HO,若CD=AB=2,求HD+HO的值. |
|
已知:等腰Rt△ABC中,∠A=90°, (1)如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连接AD,则有AD∥BC; (2)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连接AD,上述结论还成立吗?答______; (3)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连接AD,请问AD与BC的位置关系怎样?答:______. 请你在上述3个结论中,任选一个结论进行证明. |
|
如图,Rt△ABC的斜边AB=5,cosA=, (1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明); (2)若直线l与AB、AC分别相交于D、E两点,求DE的长. |
|
张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案: 张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券; 王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中,从中随机取出上个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券. 请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平? |
|
如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(1,4)、B(3,m)两点. (1)求一次函数的解析式; (2)求△AOB的面积. |
|
“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m). (1)经过2min后小雯到达点Q,如图所示,此时他离地面的高度是多少? (2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中? |
|
如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30度.求楼CD的高(结果保留根号). |
|
如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成 部分;圆的十九条弦最多可将圆分成 部分. |
|