下列各式中,与是同类二次根式的是( ) A. B. C. D. |
|
如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10. (1)求梯形ABCD的面积S; (2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问: ①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由; ②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由; ③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由. |
|
如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米. (1)求y1与x的函数关系,并在图2中画出y1的图象; (2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长; (3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F. ①说出线段EF的长在图1中所表示的实际意义; ②当0<x<6时,求线段EF长的最大值. |
|
在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E. (1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线; (2)设⊙O交BC于点F,连接EF,求的值. |
|
为选派一名学生参加全市实践活动技能竞赛,A、B两位同学在学校实习基地现场进行加工直径为20mm的零件的测试,他俩各加工的10个零件的相关数据依次如下图表所示(单位:mm)
(1)考虑平均数与完全符合要求的个数,你认为______的成绩好些; (2)计算出SB2的大小,考虑平均数与方差,说明谁的成绩好些; (3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由. |
|||||||||||||
2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比例2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%. (1)该市政府2008年投入改善医疗卫生服务的资金是多少万元? (2)该市政府2009年投入“需方”和“供方”的资金是多少万元? (3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率. |
|
如图,把等腰直角三角板△ABC绕点A旋转到△ADE的位置,使得边AD与AB重合,其中∠ACB=∠ADE=90°. (1)请直接写出旋转角的度数; (2)若,试求线段BC在上述旋转过程中所扫过部分的面积. |
|
已知关于x的方程x2-(k+2)x+2k=0. (1)求证:无论k取任意实数值,方程总有实数根. (2)若等腰三角形ABC的一边a=1,另两边长b、c恰是这个方程的两个根,求△ABC的周长. |
|
如图,在△ABC中,AB=BC,以AB为斜边作Rt△ADB,使∠ADB=90°,E、F分别是AB、AC的中点,试用所学的知识说明△DEF的形状. |
|
用配方法解方程:2x2-x-1=0. |
|