一组数据:3,2,1,2,2的众数,中位数,方差分别是( ) A.2,1,0.4 B.2,2,0.4 C.3,1,2 D.2,1,0.2 |
|
等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是( ) A.平行四边形 B.矩形 C.菱形 D.正方形 |
|
用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9 |
|
已知a为实数,那么等于( ) A.a B.-a C.-1 D.0 |
|
如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE. (1)求证:CE=CF; (2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长. |
|
阅读下边一元二次方程求根公式的两种推导方法: 请回答下列问题: (1)这两种方法有什么异同?你认为哪个方法好? (2)说说你有什么感想? (3)选用上述方法解方程:(x-1)(2-3x)=x-8. |
|
为了让广大青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”.小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题. (1)请根据图中信息,补全下面的表格; (2)分别计算他们的平均数、极差和方差填入右表格,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议? |
|
如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F. (1)证明:当旋转角为90°时,四边形ABEF是平行四边形; (2)试说明在旋转过程中,线段AF与EC总保持相等; (3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数. |
|
如图,直线l表示草原上一条河的河堤,在河堤的一侧有两个村庄A、B,它们到河堤l的距离分别为AC=30km,BD=40km,两个村庄A、B之间的距离为50km.有一牧民骑马从A村出发到B村,途中要到河边给马饮一次水. (1)在图中标出使牧民行驶距离最短的饮水点P; (2)若他在上午8点出发,以每小时30km的平均速度前进,则他能否在上午10点30分之前到达B村. |
|
如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F. (1)求证:AB=CF; (2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由. |
|