下列成语所描述的事件是必然发生的是( ) A.水中捞月 B.拔苗助长 C.守株待兔 D.瓮中捉鳖 |
|
下列图形中不是中心对称图形的是( ) A. B. C. D. |
|
如图,抛物线y=x2+3与x轴交于点A,点B,与直线y=x+b相交于点B,点C,直线y=x+b与y轴交于点E. (1)写出直线BC的解析式. (2)求△ABC的面积. (3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少? |
|
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n. (1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明; (2)求m与n的函数关系式,直接写出自变量n的取值范围; (3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2; (4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由. |
|
(1)已知一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1=______ | |
2008年5月1日,目前世界上最长的跨海大桥--杭州湾跨海大桥通车了.通车后,苏南A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用是每车380元,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元.若设问这批货物有x车. (1)用含x的代数式表示每车从宁波港到B地的海上运费; (2)求x的值. |
|
甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3,4和5;丙口袋中装有两个相同的小球,它们分别写有6和7.从这3个口袋中各随机地取出1个小球. (1)取出的3个小球上恰好有两个偶数的概率是多少? (2)取出的3个小球上全是奇数的概率是多少? |
|
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F. (1)求证:△ADE∽△BEF; (2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值. |
|
已知:如图,AB是⊙O的切线,切点为A,OB交⊙O于C且C为OB中点,过C点的弦CD使∠ACD=45°,的长为,求弦AD、AC的长. |
|
如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上. (1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2:1,画出△OA1B1.(所画△OA1B1与△OAB在原点两侧); (2)求出线段A1B1所在直线的函数关系式. |
|