已知x满足方程x2-3x+1=0,则= | |
如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是( ) A.3cm B.4cm C.5cm D.6cm |
|
四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( ) A. B. C. D.1 |
|
如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得的三角形的周长可能是( ) A.4 B.4.5 C.5 D.5.5 |
|
用配方法解方程2x2+3=7x时,方程可变形为( ) A.(x-)2= B.(x-)2= C.(x-)2= D.(x-)2= |
|
如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是( ) A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP |
|
如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为( ) A.30° B.40° C.50° D.60° |
|
已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题: (1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D. ①在图甲中,证明:PC=PD; ②在图乙中,点G是CD与OP的交点,且PG=PD,求△POD与△PDG的面积之比; (2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长. |
|
如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)求t=15时,△PEF的面积; (2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由. (3)当t为何值时,△EOP与△BOA相似. |
|
如图,在正方形ABCD中,P是CD上一动点(点P与C、D不重合),三角板的直角顶点与点P重合,并且一条直角边始终经过点A,另一直角边与BC交于点E. (1)△ADP与△PCE相似吗?如果相似,请写出证明过程. (2)当点P位于CD的中点时,求△PCE与△ADP的面积比. |
|