一天的时间是86400秒,将数字86400用科学记数法表示为( ) A.8.64×105 B.8.64×104 C.86.4×103 D.864×102 |
|
化简(-a3)2的结果为( ) A.a9 B.-a6 C.-a9 D.a6 |
|
-的相反数是( ) A. B. C.- D.- |
|
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10厘米,OC=6厘米,现有两动点P,Q分别从O,A同时出发,点P在线段OA上沿OA方向作匀速运动,点Q在线段AB上沿AB方向作匀速运动,已知点P的运动速度为1厘米/秒. (1)设点Q的运动速度为0.5厘米/秒,运动时间为t秒, ①当△CPQ的面积最小时,求点Q的坐标; ②当△COP和△PAQ相似时,求点Q的坐标. (2)设点Q的运动速度为a厘米/秒,问是否存在a的值,使得△OCP与△PAQ和△CBQ这两个三角形都相似?若存在,请求出a的值,并写出此时点Q的坐标;若不存在,请说明理由. |
|
如图,已知在平面直角坐标系中,点A(4,0)、B(-3,0),点C在y轴正半轴上,且tan∠CAO=1,点Q是线段AB上的动点,过点Q作QE∥AC交BC于点E. (1)求点C的坐标及直线BC的解析式; (2)连结CQ,当△CQE的面积最大时,求点Q的坐标; (3)若点P是线段AC上的点,是否存在这样的点P,使△PQE成为等腰直角三角形?若存在,试求出所有符合条件的点P的坐标;若不存在,说明理由. |
|
如图,在△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D (1)试判断直线AC与⊙D的位置关系,并说明理由; (2)若点E在AB上,且DE=DC,当AB=3,AC=5时,求线段AE长. |
|
阅读以下的材料: 如果两个正数a,b,即a>0,b>0,则有下面的不等式:当且仅当a=b时取到等号 我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子: 例:已知x>0,求函数的最小值. 【解析】 另,则有,得,当且仅当时,即x=2时,函数有最小值,最小值为2. 根据上面回答下列问题 ①已知x>0,则当x=______ |
|
兴趣小组的同学要测量教学楼前一棵树的高度.在阳光下,一名同学测得一根竖直在地面上的长为1米的竹竿的在地面上的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此台阶上影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则此树高为多少米? |
|
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E. (1)求∠AEC的度数; (2)求证:四边形OBEC是菱形. |
|
学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣);并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了______名学生; (2)图①、②补充完整; (3)将图②中C层次所在扇形的圆心角的度数; (4)根据抽样调查的结果,请你估计该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次). |
|