如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=. (1)求OD、OC的长; (2)求证:△DOC∽△OBC; (3)求证:CD是⊙O切线. |
|
如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC翻折得到△EBC. (1)四边形ABEC一定是什么四边形? (2)证明你在(1)中所得出的结论. |
|
某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围. |
|||||||||||||||
如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°. (1)画出旋转后的小旗A′C′D′B′; (2)写出点A′,C′,D′的坐标; (3)求出线段BA旋转到B′A′时所扫过的扇形的面积. |
|
韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀. (1)请用列表法或树状图表示出所有可能出现的游戏结果; (2)求韦玲胜出的概率. |
|
解方程:3(x+4)=x. |
|
计算:(-2)2-(). |
|
有下列4个命题: ①方程x2-(+)x+=0的根是和. ②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3. ③点P(x,y)的坐标x,y满足x2+y2+2x-2y+2=0,若点P也在y=的图象上,则k=-1. ④若实数b、c满足1+b+c>0,1-b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x满足-1<x<1. 上述4个命题中,真命题的序号是 . |
|
如图,△ABC≌△DEF,请根据图中提供的信息,写出x= . |
|
学校组织“我的中国梦”演讲比赛,每位选手的最后得分为去掉一个最低分、一个最高分后的平均数.7位评委给小红同学的打分是:9.3,9.6,9.4,9.8,9.5,9.1,9.7,则小红同学的最后得分是 . | |