如图,已知抛物线y=(x-2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧. (1)若抛物线过点M(-2,-2),求实数a的值; (2)在(1)的条件下,解答下列问题; ①求出△BCE的面积; ②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标. |
|
为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题: (1)此次调查的样本容量为______; (2)在表中:m=______;n=______; (3)补全频数分布直方图; (4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优秀人数大约是______名.
|
||||||||||||||||
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤: (1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2; (2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长. |
|
如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长. |
|
如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是( ) A.1 B. C. D. |
|
已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论: ①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2), 其中结论正确的个数是( ) A.1 B.2 C.3 D.4 |
|
如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( ) A.4 B.5 C.6 D.7 |
|
如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是( ) A. B. C. D. |
|
在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:
A.30,35 B.50,35 C.50,50 D.15,50 |
|||||||||||||
对于反比例函数y=,下列说法正确的是( ) A.图象经过点(1,-3) B.图象在第二、四象限 C.x>0时,y随x的增大而增大 D.x<0时,y随x增大而减小 |
|