一个圆锥的母线长是9,底面圆的半径是6,则这个圆锥的侧面积是( ) A.81π B.27π C.54π D.18π |
|
若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( ) A.2018 B.2008 C.2014 D.2012 |
|
如图是由八个相同小正方体组成的几何体,则其主视图是( ) A. B. C. D. |
|
小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是( ) A. B. C. D. |
|
下列既是轴对称又是中心对称图形的是( ) A. B. C. D. |
|
下列运算正确的是( ) A. B.2a•3b=5ab C.3a2÷a2=3 D. |
|
已知⊙O1的半径为R,周长为C. (1)在⊙O1内任意作三条弦,其长分别是l1l2l3,求证:l1+l2+l3<C; (2)如图,在直角坐标系xOy中,设⊙O1的圆心为O1(R,R). ①当直线l:y=x+b(b>0)与⊙O1相切时,求b的值; ②当反比例函数y=(k>0)的图象与⊙O1有两个交点时,求k的取值范围. |
|
甲、乙两辆汽车沿同一路线赶赴距出发地480km的目的地,乙车比甲车晚出发2h(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(km)与时间x(h)之间的函数关系对应的图象(线段AB表示甲车出发不足2h因故障停车检修).请根据图象所提供的信息,解决以下问题: (1)求乙车所行路程y与时间x之间的函数关系式; (2)求两车在途中第二次相遇时,它们距出发地的路程; (3)乙车出发多长时间,两车在途中第一次相遇.(写出解题过程) |
|
如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F. (1)证明:△ACE∽△FBE; (2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由. |
|
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B. (1)求这条抛物线所对应的函数关系式; (2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标; (3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标. |
|