幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件. | |
将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 . | |
若a>0且ax=2,ay=3,则ax-y的值为( ) A.-1 B.1 C. D. |
|
一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是( ) A.x>-2 B.x>0 C.x<-2 D.x<0 |
|
某等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ) A.9cm B.12cm C.15cm D.12cm或15cm |
|
把多项式2x2-8x+8分解因式,结果正确的是( ) A.(2x-4)2 B.2(x-4)2 C.2(x-2)2 D.2(x+2)2 |
|
从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有( ) A.12对 B.6对 C.5对 D.3对 |
|
反比例函数的图象位于( ) A.第一、三象限 B.第二、四象限 C.第二、三象限 D.第一、二象限 |
|
的相反数是( ) A.- B. C.- D. |
|
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2. (1)求A、B、C三点的坐标; (2)求此抛物线的表达式; (3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围; (4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由. |
|