sin30°的值是( ) A. B. C. D.1 |
|
如图,抛物线y=ax2+bx-3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由. |
|
已知点A(1,c)和点B(3,d)是直线y=k1x+b与双曲线(k2>0)的交点. (1)过点A作AM⊥x轴,垂足为M,连接BM.若AM=BM,求点B的坐标. (2)若点P在线段AB上,过点P作PE⊥x轴,垂足为E,并交双曲线(k2>0)于点N.当取最大值时,有PN=,求此时双曲线的解析式. |
|
某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案: 方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款). 方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元) (1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式. (2)小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢? (3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法. |
|
如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x. (1)在△ABC中,AB=______; (2)当x=______时,矩形PMCN的周长是14; (3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明. |
|
西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题: (1)本次调查中,张老师一共调查了______名同学; (2)将上面的条形统计图补充完整; (3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率. |
|
关于x的一元二次方程x2+(2k-3)x+k2=0有两个不相等的实数根α、β. (1)求k的取值范围; (2)若α+β+αβ=6,求(α-β)2+3αβ-5的值. |
|
已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点. (1)求证:△BOE≌△DOF; (2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由. |
|
解方程: |
|
化简求值:,其中x=-. |
|