如图是一个正六棱柱的主视图和左视图,则图中的a=( ) A. B. C.2 D.1 |
|
有如下图形:①函数y=x-1的图象;②函数的图象;③一段圆弧;④平行四边形.其中一定是轴对称图形的有( ) A.1个 B.2个 C.3个 D.4个 |
|
“恒盛”超市购进一批大米,大米的标准包装为每袋30kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米重量的平均数和极差分别是( ) A.0,1.5 B.29.5,1 C.30,1.5 D.30.5,0 |
|
下列各式:①a=1;②a2•a3=a5;③2-2=-;④-(3-5)+(-2)4÷8×(-1)=0;⑤x2+x2=2x2,其中正确的是( ) A.①②③ B.①③⑤ C.②③④ D.②④⑤ |
|
如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D. (1)求抛物线的解析式; (2)求cos∠CAB的值和⊙O1的半径; (3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标. |
|
如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC (1)求k的值; (2)若△BCD的面积为12,求直线CD的解析式; (3)判断AB与CD的位置关系,并说明理由. |
|
如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O. (1)求边AB的长; (2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G. ①判断△AEF是哪一种特殊三角形,并说明理由; ②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长. |
|
济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:
(2)扇形统计图中2.5米3对应扇形的圆心角为______度; (3)该小区300户居民5月份平均每户节约用水多少米3? |
|||||||||||
冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元? |
|
(1)如图1,在▱ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF. (2)如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数. |
|