计算(a3)2的结果是( ) A.a5 B.a6 C.a8 D.a9 |
|
如图1,图2所示,直线l:y=x+b过点P,点P自原点O开始,沿x轴正半轴以每秒1个单位的速度运动.设运动时间为t(s),(0≤t≤7).直角梯形ABCD,AB∥CD,∠D=90°,A(1,O),B(7,0),C(4,3).直线l与折线DC-CB交于N,与折线DA-AB交于M,与y轴交于点Q.设△BMN的面积为S. (1)用含t的代数式表示b; (2)确定S与t之间的函数关系式; (3)t为何值时,S最大; (4)t为何值时,S等于梯形ABCD面积的一半; (5)直接写出t为何值时,△POQ与以P,B,C为顶点的三角形相似. |
|
为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下: (1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围; (2)分别求出这两个投资方案的最大年利润; (3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案? |
|
阅读:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1 求证:AE=CD,AE⊥CD. 证明:延长CD交AE于K 在△AEB和△CDB中 ∵ ∴△AEB≌△CDB(SAS) ∴AE=CD ∠EAB=∠DCB ∵∠DCB+∠CDB=90° ∠ADK=∠CDB ∴∠ADK+∠DAK=90° ∴∠ADK=90° ∴AE⊥CD (2)类比:若关系和位置关系还成立吗?若成立,请给与证明;若不成立,请说明理由.将(1)中的Rt△DBE绕点逆时针旋转一个锐角,如图2所示,问(1)中线段AE,CD间的数量; (3)拓展:在图2中,将“AB=BC,DB=EB”改成“BC=kAB,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系还成立吗?若成立,请给与证明;若不成立,请说明理由. |
|
如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点. (1)求k1、k2的值. (2)直接写出时x的取值范围; (3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由. |
|
如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D. (1)求证:AB是⊙O的切线; (2)若CD的弦心距为1,BE=EO,求BD的长. |
|
如图,AB表示的是某单位办公楼的高,AE表示从楼顶垂挂下的宣传条幅,其长为30米,CD表示张明同学所处的位置与高度,张明同学测得条幅顶端A的仰角为60°,测得条幅底端E的仰角为30°.求张明同学到办公楼的水平距离(精确到整米数). (参考数据:≈1.41,≈1.73) |
|
近日从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图: 请根据以上信息解答问题: (1)补全条形统计图; (2)四种家电销售总量为______万台; (3)扇形统计图中彩电部分所对应的圆心角是______度; (4)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率. |
|
先化简,再求代数式的值.,其中a=(-1)2012+tan60°. |
|
将从1开始的正整数按如图方式排列. 字母P,Q,M,N表示数字的位置,则2013这个数应排的位置是 .(填P,Q,M,N) |
|