-2的倒数是( ) A.-2 B.2 C.- D. |
|
如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点. (1)求该抛物线解析式与F点坐标; (2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒. ①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由. ②若△PMH是等腰三角形,请直接写出此时t的值. |
|
国家推行“节能减排,低碳经济”政策后,环保节能设备的产品供不应求.某公司购进了A、B两种节能产品,其中A种节能产品每件成本比B种节能产品多4万元;若购买相同数量的两种节能产品,A种节能产品要花120万元,B种节能产品要花80万元.已知A、B两种节能产品的每周销售数量y(件)与售价x(万元/件)都满足函数关系y=-x+20(x>0). (1)求两种节能产品的单价; (2)若A种节能产品的售价比B种节能产品的售价高2万元/件,求这两种节能产品每周的总销售利润w(万元)与A种节能产品售价x(万元/件)之间的函数关系式;并说明A种节能产品的售价为多少时,每周的总销售利润最大? |
|
如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F. (1)求证:BD=BF; (2)若BC=6,AD=4,求sinA的值. |
|
如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内. 求证:(1)∠PBA=∠PCQ=30°; (2)PA=PQ. |
|
在萧山区第二届汽车展期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中. (1)参加展销的D型号轿车有多少辆? (2)请你将图2的统计图补充完整; (3)通过计算说明,哪一种型号的轿车销售情况最好? |
|
先化简,然后选取一个你认为符合题意的x的值代入求值. |
|
求值:|-2|+2009-(-)-1+3tan30°. |
|
如图,正方形ABCD的顶点C,D在反比例函数(x>0)的图象上,顶点A,B分别在x轴、y轴的正半轴上,则点D的坐标是 . |
|
定义新运算“*”,规则:a*b=,如1*2=2,*.若x2+x-1=0的两根为x1,x2,则x1*x2= . | |