小麦粒色受不连锁的三对基因A/a、B/b、C/c控制。A、B和C决定红色,每个基因对粒色增加效应相同且具叠加性,a、b和c决定白色。将粒色最浅和最深的植株杂交得到F1,F1的自交后代中,与基因型为Aabbcc的个体表现型相同的概率是( ) A.1/64B.6/64 C.15/64D.20/64
|
|
某植物的花色受不连锁的两对基因A/a、B/b控制,这两对基因与花色的关系如图所示,此外,a基因对于B基因的表达有抑制作用。现将基因型为AABB的个体与基因型为aabb的个体杂交得到F1,则F1的自交后代中花色的表现型及比例是( ) A.白∶粉∶红,3∶10∶3B.白∶粉∶红,3∶12∶1 C.白∶粉∶红,4∶3∶9D.白∶粉∶红,6∶9∶1
|
|
某遗传病的遗传涉及非同源染色体上的两对等位基因。已知Ⅰ1基因型为AaBB,且Ⅱ2与Ⅱ3婚配的子代不会患病。根据以下系谱图,正确的推断是( ) A.Ⅰ3的基因型一定为AABb B.Ⅱ2的基因型一定为aaBB C.Ⅲ1的基因型可能为AaBb或AABb D.Ⅲ2与基因型为AaBb的女性婚配,子代患病的概率为3/16
|
|
控制玉米(2n=20)的胚乳非甜质与甜质等位基因(S、s)位于第4号染色体上、控制胚乳粒紫色与无色基因(B、b)和非糯性与糯性等位基因(R、r)都位于第9号染色体上。现欲培育纯合紫色非糯性非甜质(BBRRSS)、纯合无色糯性甜质(bbrrss)和杂合紫色非糯性非甜质(BbRrSs)三个品系,用于遗传学的实验教学。 (1)从大田种植的种子中选取表现型为无色非糯性非甜质和紫色糯性甜质的种子,种植并进行杂交,从当年果穗种子(F1)中,选出表现型为无色糯性甜质和紫色非糯性非甜质的种子,能稳定遗传的表现型是 ,另一类种子种植后通过 可获得纯合品系。如当年没有获得表现为无色糯性甜质的种子,则说明上述亲本的基因型中,至少有一个亲本的一对显性基因是 的。 (2)如果纯合品系构建成功,对两个纯合品系应如何处理,才能保证每年均能获得上述三个品系? 。 为验证自由组合定律,可用杂合子品系(BbRrSs)自交,统计子代性状 或 的组合比是否符合9∶3∶3∶1。
|
|
已知豌豆红花对白花、高茎对矮茎、子粒饱满对子粒皱缩为显性。控制它们的三对基因自由组合。以纯合的红花高茎子粒皱缩与纯合的白花矮茎子粒饱满植株杂交,F2理论上不会出现的是( ) A.8种表现型 B.高茎子粒饱满∶矮茎子粒皱缩为15∶1 C.红花子粒饱满∶红花子粒皱缩∶白花子粒饱满∶白花子粒皱缩为9∶3∶3∶1 D.红花高茎子粒饱满∶白花矮茎子粒皱缩为27∶1
|
|
某对夫妇的各1对染色体上的基因如图所示,A、b、D分别为甲、乙、丙三种遗传病的致病基因,不考虑染色体交叉互换和基因突变,则他们的孩子( ) A.同时患三种病的概率是1/2 B.同时患甲、丙两病的概率是3/8 C.患一种病的概率是1/2 D.不患病的概率为1/4
|
|
为提高小麦的抗旱性,有人将大麦的抗旱基因(HVA)导入小麦,筛选出HVA基因成功整合到染色体上的抗旱性T植株(假定HVA基因都能正常表达,黑点表示HVA基因的整合位点)。若让如图所示类型的T植株自交,子代中抗旱性植株所占比例是( ) A.1/16B.1/8C.15/16D.8/16
|
|
某生物个体减数分裂产生的配子种类及其比例是Ab∶aB∶AB∶ab为4∶4∶1∶1,若这个生物进行自交,其后代出现纯合体的概率是( ) A.1/16B.1/64C.1/100D.34/100
|
|
南瓜所结果实中白色(A)对黄色(a)为显性,盘状(B)对球状(b)为显性,两对基因独立遗传。若让基因型为AaBb的白色盘状南瓜与“某南瓜”杂交,子代表现型及其比例如下图所示,则下列叙述正确的是( ) A.“某南瓜”为纯合子 B.“某南瓜”的基因型为Aabb C.子代中A基因频率与AA基因型频率相等 D.配子形成过程中A和B遵循基因的分离定律
|
|
某植物红花和白花这对相对性状同时受多对等位基因控制(如A、a;B、b;C、c……)。当个体的基因型中每对等位基因都至少含有一个显性基因时(即A B C ……)才开红花,否则开白花。现有甲、乙、丙、丁4个纯合白花品系,相互之间进行杂交,杂交组合、后代表现型及其比例如下: 根据杂交结果回答问题: (1)这种植物花色的遗传符合哪些遗传定律? (2)本实验中,植物的花色受几对等位基因的控制,为什么?
|
|