凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据(),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是( ) A.与具有正线性相关关系 B.回归直线过样本的中心点 C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.
|
|
用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( ) A., B., C., D.,
|
|
与下列哪个值相等( ). A. B. C. D.
|
|
已知函数. (Ⅰ)当时,求函数的极值; (Ⅱ)时,讨论的单调性; (Ⅲ)若对任意的恒有成立,求实数的取值范围.
|
|
已知函数的一段图像如图所示. (1)求此函数的解析式; (2)求此函数在上的单调递增区间.
|
|
设函数, (1)求函数f(x)在x∈[﹣1,2]上的最大值和最小值; (2)若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.
|
|
已知曲线f(x)=alnx+bx+1在点(1,f(1))处的切线斜率为﹣2,且是函数y=f(x)的极值点,求a﹣b的值
|
|
已知命题p:“∀x∈[1,2], x2-lnx-a≥0”与命题q:“∃x∈R,x2+2ax-8-6a=0”都是真命题,求实数a的取值范围.
|
|
已知cos(θ),求的值
|
|
设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=()1﹣x,则 ①2是函数f(x)的一个周期; ②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数; ③函数f(x)的最大值是1,最小值是0; ④x=1是函数f(x)的一个对称轴; ⑤当x∈(3,4)时,f(x)=()x﹣3. 其中所有正确命题的序号是_____.
|
|