如图所示,质量为M足够长的斜面体始终静止在水平地面上,有一个质量为m的小物块在受到沿斜面向下的力F的作用下,沿斜面匀加速下滑,此过程中斜面体与地面的摩擦力为零。已知重力加速度为g,则下列说法正确的是 ( ) A. 斜面体对地面的压力大小小于(m+M)g B. 斜面体给小物块的作用力大小小于mg C. 若将力F撤掉,小物块将匀速下滑 D. 若将力F的方向突然改为竖直向下,小物块仍做加速运动
|
|
如图所示,理想变压器的原、副线圈电路中接有四只规格相同的灯泡,原线圈电路接在电压恒为U0的交变电源上。当S断开时,L1、L2、L3三只灯泡均正常发光;若闭合S,已知灯泡都不会损坏,且灯丝电阻不随温度变化,则 ( ) A. 灯泡L1变亮 B. 灯泡L2变亮 C. 灯泡L3亮度不变 D. 灯泡L4正常发光
|
|
如图所示,水平传送带匀速运动,在传送带的右侧固定一弹性挡杆。 在t=0时刻,将工件轻轻放在传送带的左端,当工件运动到弹性挡杆所在的位置时与挡杆发生碰撞,已知碰撞时间极短,不计碰撞过程的能量损失。则从工件开始运动到与挡杆第二次碰撞前的运动过程中,工件运动的v-t图象下列可能的是 ( ) A. B. C. D.
|
|
如图所示为氢原子的能级结构示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为2.49eV的金属钠,下列说法不正确的是 ( ) A. 这群氢原子能辐射出三种不同频率的光,其中从n=3能级跃迁到n=2能级所发出的光波长最长 B. 这群氢原子在辐射光子的过程中电子绕核运动的动能减小,电势能增大 C. 能发生光电效应的光有两种 D. 金属钠表面所发出的光电子的最大初动能是9.60 eV
|
|
在桌面上有一个倒立的玻璃圆锥,其顶点恰好与桌面相接触,圆锥的轴(图中虚线)与桌面垂直,过轴线的截面为等边三角形,如图所示,有一半径为r=0.1m的圆柱形平行光束垂直入射到圆锥的桌面上,光束的中心轴与圆锥的轴重合,已知玻璃的折射率为n=1.73。则 (I)通过计算说明光线I能不能在圆锥的侧面B点发生全反射 (II)光线1经过圆锥侧面B点后射到桌面上某一点所用的总时间是多少?(结果保留三位有效数字)
|
|
如图所示,一列简谐横波在某一时刻的波的图像,A、B、C是介质中的三个质点,已知波是向x正方向传播,波速为v=20m/s,下列说法正确的是 A. 这列波的波长是10m B. 质点A的振幅为零 C. 质点B此刻向y轴正方向运动 D. 质点C再经过0.15s通过平衡位置 E. 质点一个周期内通过的路程一定为1.6cm
|
|
如图所示,粗细均匀的U形管,左端封闭,右端开口,左端用水银封闭着长L=15cm的理想气体,当温度为27℃时,两管水银面的高度差,设外界大气压为75cmHg,则 (1)若对封闭气体缓慢加热,为了使左右两管中的水银面相平,温度需升高到多少? (2)若保持27℃不变,为了使左右两管中的水银面相平,需从右管的开口端再缓慢注入的水银柱长度应为多少?
|
|
对于一定质量的理想气体,下列说法正确的是______ A. 体积不变,压强减小的过程,气体一定放出热量,内能减小 B. 若气体内能增加,则外界一定对气体做功 C. 若气体的温度升高,则每个气体分子的速度一定增大 D. 若气体压强不变,气体分子平均距离增大时,则气体分子的平均动能一定增大 E. 气体对器壁的压强是由大量气体分子对器壁不断碰撞而产生的
|
|
如图所示,在平面直角坐标系中,第三象限里有一加速电场,一个电荷量为q、质量为m的粒子,从静止开始经加速电场加速后,垂直x轴从A点进入第二象限,A点到坐标原点O的距离为R。在第二象限的区域内,存在着指向O点的均匀辐射状电场,距O点R处的电场强度大小均为E,粒子恰好能垂直y轴从P点进入第一象限。当粒子从P点运动一段距离R后,进入一圆形匀强磁场区域,磁场方向垂直纸面向外,磁感强度为B,粒子在磁场中速度方向偏转60o,粒子离开磁场区域 后继续运动,通过x轴上的Q点进入第四象限。求: (1)加速电场的电压U; (2)圆形匀强磁场区域的最小面积; (3)求粒子在第一象限中运动的时间。
|
|
如图所示,一条轨道固定在竖直平面内,粗糙的ab段水平,bcde段光滑,两段轨道在b处平滑连接。cde段是以O为圆心,半径为R的一小段圆弧,可视为质点的物块A和B紧靠在一起,静止于b处,A的质量是B的3倍。两物块在足够大的内力作用下突然分离,分别向左、右沿轨道运动,A、B始终未脱离轨道,不计滑块B在轨道b处的能量损失。B到d点时速度沿水平方向,此时轨道对B的支持力大小等于B所受重力的3/4,A与ab段的动摩擦因数为μ,重力加速度为g。 求: (1)物块B在d点的速度大小; (2)物块A、B在b点刚分离时,物块B的速度大小; (3)物块A滑行的最大距离s。
|
|