下图为远距离高压输电的示意图.关于远距离输电,下列表述不正确的是( ) A. 增加输电导线的横截面积有利于减少输电过程中的电能损失 B. 高压输电是通过减小输电电流来减小电路的发热损耗 C. 在输送电压一定时,输送的电功率越大,输电过程中的电能损失越小 D. 高压输电必须综合考虑各种因素,不一定是电压越高越好
|
|
如图所示,有一矩形线圈的面积为S,匝数为N,电阻不计,绕OO′轴在水平方向的磁感应强度为B的匀强磁场中以角速度ω做匀速转动,从图示位置开始计时。矩形线圈通过铜滑环接理想变压器原线圈,副线圈接有固定电阻R0和滑动变阻器R,下列判断正确的是 A. 矩形线圈产生的感应电动势的瞬时值表达式为e=NBSωsin ωt B. 矩形线圈从图示位置经过时间内,通过电流表A1的电荷量为0 C. 当滑动变阻器的滑片向上滑动过程中,电流表A1和A2示数都变小 D. 当滑动变阻器的滑片向上滑动过程中,电压表V1示数不变,V2和V3的示数都变小
|
|
两球A、B在光滑水平面上沿同一直线、同一方向运动,mA=1kg、mB=2kg、vA=6m/s、vB=2m/s.当球A追上球B并发生碰撞后,两球A、B速度的可能值是( ) A. vA′=5m/s,vB′=2.5m/s B. vA′=2m/s,vB′=4m/s C. vA′=-4m/s,vB′=7m/s D. vA′=-2m/s,vB′=4m/s、
|
|
如图,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为 A. B. C. D.
|
|
将质量相等的三只小球A、B、C从离地同一高度以大小相同的初速度分别上抛、下抛、平抛出去,空气阻力不计,那么,有关三球动量和冲量的情况是 ( ) A. 三球刚着地时的动量均相同 B. 三球刚着地时的动量均不相同 C. 三球从抛出到落地时间内,受重力冲量最大的是A球,最小的是B球 D. 三球从抛出到落地时间内,动量的变化量均相同
|
|
2011年3月11日,日本东海岸发生9.0级地震,地震引发的海啸摧毁了日本福岛第一核电站的冷却系统,最终导致福岛第一核电站的6座核反应堆不同程度损坏,向空气中泄漏大量碘131、铯137、钡等放射性物质,这些放射性物质随大气环流飘散到许多国家.4月4日,日本开始向太平洋排放大量带有放射性物质的废水,引起周边国家的指责.有效防治核污染,合理、安全利用核能成为当今全世界关注的焦点和热点.下列说法中正确的是( ) A. 福岛第一核电站是利用原子核衰变时释放的核能来发电的 B. 铯、碘、钡等衰变时释放能量,故会发生质量亏损 C. 铯137进行β衰变时,往往同时释放出γ射线,γ射线具有很强的电离能力,能穿透几厘米厚的铅板 D. 铯137进入人体后主要损害人的造血系统和神经系统,其半衰期是30.17年,如果将铯137的温度降低到0度以下,可以延缓其衰变速度
|
|
了解科学家发现物理规律的过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要,以下符合物理发展史实的是( ) A.汤姆孙通过对天然放射性现象的研究发现了电子 B.波尔进行了α粒子散射实验并提出了著名的原子核式模型 C.约里奥•居里夫妇用α粒子轰击金属铍并发现了中子 D.卢瑟福用α粒子轰击氦原子核发现了质子,并预言了中子的存在
|
|
如图(a)所示,水平放置的平行金属板A、B间加直流电压U,A板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B1=B,B2未知.现有一比荷为、不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在 t1时刻粒子第一次撞到左挡板,紧接着在t1+t2时刻粒子撞到右挡板,然后粒子又从O点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求: (1)粒子第一次到达O点时的速率; (2)图中B2的大小; (3)金属板A和B间的距离d.
|
|
如图所示,在xoy坐标系中,两平行金属板如图1放置,OD与x轴重合,板的左端与原点O重合,板长L=2m,板间距离d=1m,紧靠极板右侧有一荧光屏.两金属板间电压UAO变化规律如图2所示,变化周期为T=2×10﹣3s,U0=103V,t=0时刻一带正电的粒子从左上角A点,以平行于AB边v0=1000m/s的速度射入板间,粒子电量q=1×10﹣5C,质量m=1×10﹣7kg.不计粒子所受重力.求: (1)粒子在板间运动的时间; (2)粒子打到荧光屏上的纵坐标; (3)粒子打到屏上的动能.
|
|
一长木板置于光滑水平地面上,木板左端放置一小物块,在木板右方有一墙壁,如图所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知小物块与木板间的动摩擦因素为0.4,木板的质量是小物块质量的1.5倍,重力加速度大小g取10m/s2.求 (1)木板和木块的最终速度v; (2)木板的最小长度L;
|
|