如图a所示,匀强磁场垂直于xOy平面,磁感应强度B1按图b所示规律变化(垂直于纸面向外为正).t=0时,一比荷为C/kg的带正电粒子从原点沿y轴正方向射入,速度大小,不计粒子重力. (1)求带电粒子在匀强磁场中运动的轨道半径. (2)求时带电粒子的坐标. (3)保持b中磁场不变,再加一垂直于xOy平面向外的恒定匀强磁场B2,其磁感应强度为0.3T,在t=0时,粒子仍以原来的速度从原点射入,求粒子回到坐标原点的时刻.
|
|
(1)若波沿x轴负方向传播,求它传播的速度. (2)若波沿x轴正方向传播,求它的最大周期. (3)若波速是25 m/s,求t=0s时刻P点的运动方向
|
|
如图所示,一根长直棒AB竖直地插入水平池底,水深a=0.8m,棒露出水面部分的长度b=0.6m,太阳光斜射到水面上,与水面夹角=37°,已知水的折射率n=,sin37°=0.6,cos37°=0.8.求: ①太阳光射入水中的折射角β; ②棒在池底的影长l.
|
|
如图所示,某区域电场线左右对称分布,M、N为对称线上的两点.下列说法正确的是( ) A. M点电势一定高于N点电势 B. M点场强一定大于N点场强 C. 正电荷在M点的电势能大于在N点的电势能 D. 将电子从M点移动到N点,静电力做正功
|
|
如图所示,长为L的轻杆一端固定一个小球,另一端固定在光滑水平轴上,使小球在竖直平面内做圆周运动,关于小球在过最高点的速度,下列叙述中正确的是:( ) A、v的极小值为 B、v由零逐渐增大,向心力也逐渐增大 C、当v由值逐渐增大时,杆对小球的弹力也逐渐增大 D、当v由值逐渐减小时,杆对小球的弹力也逐渐增大
|
|
如图是质量为1kg的质点在水平面上运动的v-t图像,以水平向右的方向为正方向。以下判断正确的是 A、在0~3s时间内,合力对质点做功为6J B、在4~6s时间内,质点的平均速度为3m/s C、在1~5s时间内,合力的平均功率为4W D、在t=6s时,质点的加速度为零
|
|
如图所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度va、vb沿水平方向抛出,经过时间ta、tb后落到与两抛出点水平距离相等的P点。若不计空气阻力,下列关系式正确的是 A.ta > tb B.ta < tb C.va > vb D.va < vb
|
|
如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接。弹簧的另一端固定在墙上,并且处于原长状态。现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最低点时弹簧的长度为2L(未超过弹性限度),从圆环开始运动至第一次运动到最低点的过程中 A.弹簧对圆环的冲量方向始终向上,圆环的动量先增大后减小 B.弹簧对圆环的拉力始终做负功,圆环的动能一直减小 C.圆环下滑到最低点时,所受合力为零 D.弹簧弹性势能变化了
|
|
著名物理学家费曼曾设计过这样一个实验:一块水平放置的绝缘体圆盘可绕过其中心的竖直轴自由转动,在圆盘的中部有一个线圈,圆盘的边缘固定着一圈带负电的金属小球,如图所示。当线圈接通直流电源后,线圈中的电流方向如图中箭头所示,圆盘会发生转动。几位同学对这一实验现象进行了解释和猜测,你认为合理的是 A.接通电源后,线圈产生磁场,带电小球受到洛伦兹力,从而导致圆盘沿顺时针转动(从上向下看) B.接通电源后,线圈产生磁场,带电小球受到洛伦兹力,从而导致圆盘沿逆时针转动(从上向下看) C.接通电源的瞬间,线圈产生变化的磁场,从而产生电场,导致圆盘沿顺时针转动(从上向下看) D.接通电源的瞬间,线圈产生变化的磁场,从而产生电场,导致圆盘沿逆时针转动(从上向下看)
|
|
电动自行车是一种应用广泛的交通工具,其速度控制是通过转动右把手实现的,这种转动把手称“霍尔转把”,属于传感器非接触控制.转把内部有永久磁铁和霍尔器件等,截面如图(甲).开启电源时,在霍尔器件的上下面之间加一定的电压,形成电流,如图(乙).随着转把的转动,其内部的永久磁铁也跟着转动,霍尔器件能输出控制车速的电压,已知电压与车速关系如图(丙).以下关于“霍尔转把”叙述正确的是( ) A. 为提高控制的灵敏度,永久磁铁的上、下端分别为N、S 极 B. 按图甲顺时针转动电动车的右把手,车速将变快 C. 图乙中从霍尔器件的左右侧面输出控制车速的霍尔电压 D. 若霍尔器件的上下面之间所加电压正负极性对调,将影响车速控制
|
|