绕在同一铁芯上的线圈Ⅰ、Ⅱ按图所示方法连接,G为电流计,则( ) A.保持开关S闭合状态,G的示数不为零 B.开关S闭合瞬间, G的示数不为零 C.保持开关S闭合,移动变阻器R0滑动触头的位置,G的示数为零 D.断开开关S的瞬间,G的示数为零
|
|
如图所示,在条形磁铁的外面套着一个闭合金属弹簧线圈P,现用力从四周拉弹簧线圈,使线圈包围的面积变大,则下列关于穿过弹簧线圈磁通量的变化以及线圈中是否有感应电流产生的说法中,正确的是 A.磁通量增大,有感应电流产生 B.磁通量增大,无感应电流产生 C.磁通量减小,有感应电流产生 D.磁通量减小,无感应电流产生
|
|
矩形导线框abcd固定在匀强磁场中(如图甲所示),磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间t变化的规律如图乙所示,则( ) A.从0到t1时间内,导线框中电流的方向为adcba B.从0到t1时间内,导线框中电流越来越小 C.从0到t1时间内,导线框中电流越来越大 D.从0到t1时间内,导线框bc边受到安培力大小保持不变
|
|
如图所示,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力FN及在水平方向运动趋势的正确判断是( ) A.FN先小于mg后大于mg,运动趋势向左 B.FN先大于mg后小于mg,运动趋势向左 C.FN先小于mg后大于mg,运动趋势向右 D.FN先大于mg后小于mg,运动趋势向右
|
|
如图所示电路,电感线圈L的自感系数足够大,其直流电阻忽略不计,LA、LB是两个相同的灯泡,则( ) A.S闭合瞬间.A、B同时亮,然后A逐渐变暗到熄灭,B变得更亮;S断开瞬间,A亮一下才熄灭,B立即熄灭 B.S闭合瞬间,LA很亮,LB逐渐亮;S断开瞬间,LA逐渐熄灭,LB立即熄灭 C.S闭合瞬间,LA、LB同时亮,然后LA熄灭,LB亮度不变;S断开瞬间,LA亮一下才熄灭,LB立即熄灭; D.S闭合瞬间,LA不亮,LB很亮;S断开瞬间,LA、LB立即熄灭
|
|
关于感应电动势大小的下列说法中,正确的是( ) A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感应强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大
|
|
最早发现了电磁感应现象的科学家是( ) A.安培 B.库仑 C.法拉第 D.奥斯特
|
|
如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平,O点为球心,碗的内表面及碗口光滑。右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°。一根不可伸长、不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮两端上,线的两端分别系有可视为质点的小球m1和m2,且m1>m2。开始时m1恰在碗口水平直径右端A处,m2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直。当m1由静止释放运动到圆心O的正下方B点时细绳突然断开,不计细绳断开瞬间的能量损失。 (1)求小球m2沿斜面上升的最大距离s; (2)若已知细绳断开后小球m1沿碗的内侧上升的最大高度为,求。
|
|
如图所示,质量M=1.5 kg的小车静止于光滑水平面上并靠近固定在水平面上的桌子右边,其上表面与水平桌面相平,小车的左端放有一质量为0.5 kg的滑块Q。水平放置的轻弹簧左端固定,质量为0.5 kg的小物块P置于桌面上的A点并与弹簧的右端接触,此时弹簧处于原长。现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为WF=4 J,撤去推力后,P沿光滑的桌面滑到小车左端并与Q发生弹性碰撞,最后Q恰好没从小车上滑下。已知Q与小车表面间动摩擦因数。(g=10 m/s2) (1)Q刚在小车上滑行时的初速度v0 ; (2)小车的长度至少为多少才能保证滑块Q不掉下?
|
|
如图所示,有一块足够长的木板静止在光滑的水平面上,木板质量M=4kg,长为L=2m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸大小远小于L。小滑块与木板之间的动摩擦因数为μ=0.4(g=10m/s2)。若用一水平恒力F=24N拉动木板, 求:m在M上面滑动的时间。
|
|