起重机以恒定功率从地面竖直提升一重物,经 t时间物体开始以速度 v匀速运动,此时物体离地面高度 h= .
|
|
在“验证机械能守恒定律”的实验中,质量m=1kg的物体自由下落,得到如下图所示的纸带,相邻计数点间的时间间隔为0.04s.那么从打点计时器打下起点O到打下B点的过程中,物体重力势能的减少量=_______J,此过程中物体动能的增加量=______J。由此可得到的结论是 . (g="9.8" m/s2,保留三位有效数字)
|
|
雨滴下落时所受到的空气阻力与雨滴的速度有关,雨滴速度越大,它受到的空气阻力越大;此外,当雨滴速度一定时,雨滴下落时所受到的空气阻力还与雨滴半径的次方成正比。假设一个大雨滴和一个小雨滴从同一云层同时下落,最终它们都 (填“加速”、“减速”或“匀速”)下落。 (填“大”或“小”)雨滴先落到地面;接近地面时, (填“大”或“小”)雨滴的速度较小。
|
|
如图所示,一个质量为m的圆环套在一根固定的水平直杆上,环与杆的动摩擦因数为μ,现给环一个向右的初速度v0,如果在运动过程中还受到一个方向始终竖直向上的力F的作用,已知力F的大小F=kv(k为常数,v为环的运动速度),则环在整个运动过程中克服摩擦力所做的功(假设杆足够长)可能为( ) A. B. C.0 D.
|
|
在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场,区域I的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,t1时 ab边刚越过GH进入磁场Ⅰ区,此时线框恰好以速度 v1做匀速直线运动;t2时ab边下滑到JP与MN的中间位置,此时线框又恰好以速度v2做匀速直线运动。重力加速度为g,下列说法中正确的有:( ) A.t1时,线框具有加速度a=3gsinθ B.线框两次匀速直线运动的速度v1: v2=2:1 C.从t1到t2过程中,线框克服安培力做功的大小等于重力势能的减少量 D.从t1到t2,有机械能转化为电能
|
|
放在水平地面上的一物体,受到方向不变的水平推力F的作用,力F与时间t的关系和物体速度v与时间t的关系如图所示,则下列说法正确的是() ( ) A.物体与地面间的摩擦因数为0.2 B.物体与地面间的摩擦因数为0.4 C.9 s内,力F做的功是126 J D.3~6 s和6~9 s两段时间内摩擦力的平均功率相等
|
|
如图所示,劲度系数为k的轻弹簧一端固定在墙上,另一端与置于水平面上质量为m的物体接触(未连接),弹簧水平且无形变。用水平力F缓慢推动物体,在弹性限度内弹簧长度被压缩了x0 ,此时物体静止。撤去F后,物体开始向左运动,运动的最大距离为4x0。物体与水平面间的动摩擦因数为μ,重力加速度为g 。则( ) A.撤去F时,物体的加速度大小为 B.撤去F后,物体先做加速运动,再做减速运动 C.物体做匀减速运动的时间为 D.物体在加速过程中克服摩擦力做的功为
|
|
如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧后又被弹起,上升到一定高度后再下落,如此反复。通过安装在弹簧下端的压力传感器,测出弹簧弹力F随时间t变化的图像如图(乙)所示,则 A.时刻小球动能最大 B.时刻小球动能最大 C.~这段时间内,小球的动能先增加后减少 D.~这段时间内,小球增加的动能等于弹簧减少的弹性势能
|
|
如图所示,细线的一端固定于O点,另一端系一小球,在水平拉力F作用下,小球以恒定速率在竖直平面内由A点运动到B点的过程中: A.小球的机械能保持不变 B.小球受的合力对小球不做功 C.水平拉力F的瞬时功率逐渐减小 D.小球克服重力做功的瞬时功率逐渐增大
|
|
据报道,北京时间2012年5月5日夜晚,天空中出现“超级月亮”,这是2012年的最大满月.实际上,月球绕地球运动的轨道是一个椭圆,地球在椭圆的一个焦点上.根据天文学家观测,此时月球距离地球最近,约35.7万公里,与平均距离的比值约为37∶40.有传言称由于月亮对地球的引力增大,“超级月亮”会引发严重的地震、火山或者其他自然灾害.由以上信息和学过的知识,以下说法中正确的有( ) A.“超级月亮”对地球上的物体引力要比平均距离时大15%左右 B.此时月球达到最大速度 C.如果要使月球以此时到地球的距离开始绕地球做圆周运动,需要使月球适当减速 D.如果已知万有引力常量G,结合以上信息,可以计算出月球的质量
|
|