在研究电磁感应现象实验中, 1.为了能明显地观察到实验现象,请在如图所示的实验器材中,选择必要的器材,在图中用实线连接成相应的实物电路图; 2.将原线圈插入副线圈中,闭合电键,副线圈中感应电流与原线圈中电流的绕行方向 (填“相同”或“相反”); 3.将原线圈拔出时,副线圈中的感应电流与原线圈中电流的绕行方向 (填“相同”或“相反”)。
|
|
如图所示,相距为d的两条水平虚线L1、L2之间是方向水平向里的匀强磁场,磁感应强度为B,正方形线圈abcd边长为l(l<d),质量为m,电阻为R,将线圈在磁场上方高h处静止释放,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,则下列说法正确的是 A.线圈进入磁场的过程中,感应电流为逆时针方向 B.线圈进入磁场的过程中,可能做加速运动 C.线圈穿越磁场的过程中,线圈的最小速度可能为 D.线圈从ab边进入磁场到ab边离开磁场的过程,感应电流做的功为mgd
|
|
如图所示为电磁轨道炮的工作原理图。待发射弹体与轨道保持良好接触,并可在两平行轨道之间无摩擦滑动。电流从一条轨道流入,通过弹体流回另一条轨道。轨道电流在弹体处形成垂直于轨道平面的磁场(可视为匀强磁场),磁感应强度的大小与电流强度I成正比。弹体在安培力的作用下滑行L后离开轨道 A.弹体向左高速射出 B.I为原来2倍,弹体射出的速度也为原来2倍 C.弹体的质量为原来2倍,射出的速度也为原来2倍 D.L为原来4倍,弹体射出的速度为原来2倍
|
|
如图所示,回旋加速器是用来加速带电粒子使它获得很大动能的装置.其核心部分是两个D型金属盒,置于匀强磁场中,两盒分别与高频电源相连。则带电粒子加速所获得的最大动能与下列因素有关的是 A.加速的次数 B.加速电压的大小 C.金属盒的半径 D.匀强磁场的磁感强度
|
|
在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是 A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C.库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D.安培发现了磁场对运动电荷的作用规律;洛仑兹发现了磁场对电流的作用规律
|
|
如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内。当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后, A.圆环内产生变大的感应电流,圆环有收缩的趋势 B.圆环内产生变大的感应电流,圆环有扩张的趋势 C.圆环内产生变小的感应电流,圆环有收缩的趋势 D.圆环内产生变小的感应电流,圆环有扩张的趋势
|
|
如图,圆形区域内有一垂直纸面的匀强磁场,P为磁场边界上的一点。有无数带有同样电荷、具有同样质量的粒子在纸面内沿各个方向以相同的速率通过P点进入磁场。这些粒子射出边界的位置均处于边界的某一段弧上,这段圆弧的弧长是圆周长的1/3。将磁感应强度的大小从原来的B1变为B2,结果相应的弧长变为原来的一半,则B2/B1等于 A . B. C. 2 D. 3
|
|
如图所示电路中,L为电感线圈,C为电容器,当开关S由断开变为闭合时,则 A.A灯有电流通过,方向由到 B.A灯中无电流通过,不可能变亮 C.B灯立即熄灭,c点电势低于d点电势 D.B灯逐渐熄灭,c点电势低于d点电势
|
|
如图所示,某一真空室内充满竖直向下的匀强电场E,在竖直平面内建立坐标系xoy,在y<0的空间里有与场强E垂直的匀强磁场B,在y>0的空间内,将一质量为m的带电液滴(可视为质点)自由释放,此液滴则沿y轴的负方向,以加速度a =2g(g为重力加速度)作匀加速直线运动,当液滴运动到坐标原点时,瞬间被安置在原点的一个装置改变了带电性质(液滴所带电荷量和质量均不变),随后液滴进入y<0的空间内运动.液滴在y<0的空间内运动过程中
A.重力势能一定是不断减小 B.电势能一定是先减小后增大 C.动能不断增大 D.动能保持不变
|
|
一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1s时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为 A.1/2 B.1 C.2 D.4
|
|