1. 难度:简单 | |
若实数a、b互为相反数,则下列等式中成立的是( ) A. a﹣b=0 B. a+b=0 C. ab=1 D. ab=﹣1
|
2. 难度:简单 | |
“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为【 】 A.2.1×109 B.0.21×109 C.2.1×108 D.21×107
|
3. 难度:简单 | |
如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( ) A. 200cm2 B. 600cm2 C. 100πcm2 D. 200πcm2
|
4. 难度:中等 | |
在下列的计算中,正确的是( ) A. m3+m2=m5 B. m5÷m2=m3 C. (2m)3=6m3 D. (m+1)2=m2+1
|
5. 难度:简单 | |
下列各式中与是同类二次根式的是( ) A. B. C. D.
|
6. 难度:中等 | |
《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( ) A. B. C. D.
|
7. 难度:中等 | |
若关于x的不等式组无解,则a的取值范围是( ) A. a≤﹣3 B. a<﹣3 C. a>3 D. a≥3
|
8. 难度:简单 | |
如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为( ) A. 85° B. 70° C. 75° D. 60°
|
9. 难度:困难 | |
如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为( ) A. B. C. D.
|
10. 难度:中等 | |
如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为( ) A. B. C. D.
|
11. 难度:简单 | |
计算: _____; _____; =_____.
|
12. 难度:中等 | |
将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____
|
13. 难度:中等 | |
甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为_____.
|
14. 难度:中等 | |
如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若 的长为 ,则图中阴影部分的面积为_____.
|
15. 难度:困难 | |
如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为_____.
|
16. 难度:中等 | |
先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.
|
17. 难度:中等 | |
数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整: 定义概念: 顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为所对的一个圆外角. (1)请在图2中画出所对的一个圆内角; 提出猜想: (2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角 这条弧所对的圆周角;一条弧所对的圆内角 这条弧所对的圆周角;(填“大于”、“等于”或“小于”) 推理证明: (3)利用图1或图2,在以上两个猜想中任选一个进行证明; 问题解决: 经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题. (4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)
|
18. 难度:中等 | |
如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD. (1)求证:△CDF≌△BDE; (2)当AD= 时,四边形AODC是菱形; (3)当AD= 时,四边形AEDF是正方形.
|
19. 难度:中等 | |
如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414) (1)此时小强头部E点与地面DK相距多少? (2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
|
20. 难度:中等 | |
如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P. (1)求反比例函数的解析式; (2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件: ①四个顶点均在格点上,且其中两个顶点分别是点O,点P; ②矩形的面积等于k的值.
|
21. 难度:中等 | |
某物流公 司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元。 (1)该物流公司月运输两种货物各多少吨? (2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?
|
22. 难度:中等 | |
问题:(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 ; 探索:(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论; 应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
|
23. 难度:困难 | |
如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0). (1)求该抛物线所对应的函数解析式; (2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上. ①求四边形ACFD的面积; ②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.
|