1. 难度:中等 | |
用三角板作 A. B. C. D.
|
2. 难度:中等 | |
图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图( ) A. B. C. D.
|
3. 难度:简单 | |
若正多边形的一个外角是120°,则该正多边形的边数是( ) A. 6 B. 5 C. 4 D. 3
|
4. 难度:简单 | |
下列图形中,既是中心对称图形,也是轴对称图形的是 A. 赵爽弦图 B. 科克曲线 C. 河图幻方 D. 谢尔宾斯基三角形
|
5. 难度:简单 | |
如果 A. 2 B.
|
6. 难度:中等 | |
实数a,b,c,d在数轴上的对应点的位置如图所示. 若 A. B. C. D.
|
7. 难度:中等 | |
在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况. (以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理的是 A. 2015年12月至2017年6月,我国在线教育用户规模逐渐上升 B. 2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升 C. 2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万 D. 2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%
|
8. 难度:困难 | |
如图1,矩形的一条边长为x,周长的一半为y,定义(x,y)为这个矩形的坐标。如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域,已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中,则下面叙述中正确的是( ) A. 点A的横坐标有可能大于3 B. 矩形1是正方形时,点A位于区域② C. 当点A沿双曲线向上移动时,矩形1的面积减小 D. 当点A位于区域①时,矩形1可能和矩形2全等
|
9. 难度:中等 | |
从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
|
10. 难度:简单 | |
我国计划2023年建成全球低轨卫星星座——鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的网络服务. 2017年12月,我国手机网民规模已达753 000 000,将753 000 000用科学记数法表示为_______.
|
11. 难度:简单 | |
如图,AE、BD交于点C,AB∥DE,若AC=4,BC=2,DC=1,则EC=_____.
|
12. 难度:简单 | |
写出一个解为1的分式方程:_____.
|
13. 难度:简单 | |
京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟(小时),求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为__________.
|
14. 难度:简单 | |
如图,四边形ABCD是平行四边形,⊙O经过点A,C,D,与BC交于点E,连接AE,若∠D=72°,则∠BAE=______°.
|
15. 难度:中等 | |
定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦. 阿基米德折弦定理:如图1, 如图2,△
|
16. 难度:中等 | |
下面是“过圆上一点作圆的切线”的尺规作图过程. 已知:⊙O和⊙O上一点P. 求作:⊙O的切线MN,使MN经过点P. 作法:如图, (1)作射线OP; (2)以点P为圆心,小于OP的长为半径作弧交射线OP于A,B两点; (3)分别以点A,B为圆心,以大于长为半径作弧,两弧交于M,N两点; (4)作直线MN.则MN就是所求作的⊙O的切线. 请回答:该尺规作图的依据是____________________________________________________________.
|
17. 难度:中等 | |
计算:.
|
18. 难度:中等 | |
解不等式组:
|
19. 难度:中等 | |
如图,△
|
20. 难度:简单 | |
关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=0. (1)若m是方程的一个实数根,求m的值; (2)若m为负数,判断方程根的情况.
|
21. 难度:中等 | |
如图,□ (1)求证:四边形ABCD是菱形; (2)若AD = 2,则当四边形ABCD的形状是_______________时,四边形
|
22. 难度:中等 | |
在平面直角坐标系 (1)当函数的图象经过点 (2)若
|
23. 难度:中等 | |
如图, (1)已知 (2)取
|
24. 难度:中等 | |||||||||||||||||||||
某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全. 收集数据: (1)调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母); A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本 B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本 C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本 整理、描述数据: 抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下: 77 83 80 64 86 90 75 92 83 81 85 86 88 62 65 86 97 96 82 73 86 84 89 86 92 73 57 77 87 82 91 81 86 71 53 72 90 76 68 78 整理数据,如下表所示: 2018年九年级部分学生学生的体质健康测试成绩统计表
分析数据、得出结论 调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比, (2)你能从中得到的结论是_____________,你的理由是________________________________. (3)体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.
|
25. 难度:中等 | |
在研究反比例函数的图象与性质时,我们对函数解析式进行了深入分析. 首先,确定自变量 利用同样的方法,我们可以研究函数的图象与性质. 通过分析解析式画出部分函数图象如图2所示. (1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点 (2)观察图象,写出该函数的一条性质:____________________; (3)若关于
|
26. 难度:困难 | |
在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+b的顶点在x轴上,P(x1,m),Q(x2,m)(x1<x2)是此抛物线上的两点. (1)若a=1. ①当m=b时,求x1,x2的值; ②将抛物线沿y轴平移,使得它与x轴的两个交点间的距离为4,试描述出这一变化过程; (2)若存在实数c,使得x1≤c﹣1,且x2≥c+7成立,则m的取值范围是_______.
|
27. 难度:中等 | |
如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB 于点E,点D在∠AOB内,且满足∠DPA=∠OPE,DP+PE=6. (1)当DP=PE时,求DE的长; (2)在点P的运动过程中,请判断是否存在一个定点M,使得的值不变?并证明你的判断.
|
28. 难度:困难 | |
在平面直角坐标系 (1)已知点 ①在点 ②点 (2)
|