1. 难度:中等 | |
设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 |
2. 难度:中等 | |
已知,其中i为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 |
3. 难度:中等 | |
设如图是某几何体的三视图,则该几何体的体积为( ) A.9π+42 B.36π+18 C. D. |
4. 难度:中等 | |
已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为( ) A. B.1 C.2 D.4 |
5. 难度:中等 | |
在△ABC中,角A,B,C所对的边分别为a,b,c,若,b=2,sinB+cosB=,则角A的大小为( ) A. B. C. D. |
6. 难度:中等 | |
阅读如图的程序框图,运行相应的程序,输出的结果为( ) A.12 B.22 C.30 D.32 |
7. 难度:中等 | |
已知实数x,y满足,如果目标函数z=x-y的最小值为-1,则实数m等于( ) A.7 B.5 C.4 D.3 |
8. 难度:中等 | |
若两个非零向量,满足|+|=|-|=2||,则向量+与-的夹角是( ) A. B. C. D. |
9. 难度:中等 | |
函数y=f(x)满足 f(x+2)=-f(x),当x∈(-2,2]时,f(x)=x2-1,则f(x)在[0,2010]上零点的个数为( ) A.1004 B.1005 C.2009 D.2010 |
10. 难度:中等 | |
从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为( ) A. B. C. D. |
11. 难度:中等 | |
若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则a+b的最小值为( ) A. B. C. D. |
12. 难度:中等 | |
设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题: ①若a⊥b,a⊥α,b⊄α,则b∥α; ②若a∥α,a⊥β,则α⊥β; ③若a⊥β,α⊥β,则a∥α或a⊂α; ④若a⊥b,a⊥α,b⊥β,则α⊥β 其中正确命题的个数为( ) A.1 B.2 C.3 D.4 |
13. 难度:中等 | |
已知,则的展开式中的常数项为 . |
14. 难度:中等 | |
如图,EFGH 是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该院内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则 (1)P(A)= ; (2)P(B|A)= . |
15. 难度:中等 | |
函数f(x)=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则的最小值为 . |
16. 难度:中等 | |
设函数f(x)=(x>0),观察: f1(x)=f(x)=, f2(x)=f(f1(x))=, f3(x)=f(f2(x))=, f4(x)=f(f3(x))=, … 根据以上事实,由归纳推理可得: 当n∈N*且n≥2时,fn(x)=f(fn-1(x))= . |
17. 难度:中等 | |
已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和. (Ⅰ)试求{an}的通项公式; (Ⅱ)若数列{bn}满足:(n∈N*),试求{bn}的前n项和公式Tn. |
18. 难度:中等 | |||||||||||||||||||||||||||||
某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX. |
19. 难度:中等 | |
如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1. (Ⅰ)求证:AB⊥BC; (Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明. |
20. 难度:中等 | |
已知:椭圆(a>b>0),过点A(-a,0),B(0,b)的直线倾斜角为,原点到该直线的距离为. (1)求椭圆的方程; (2)斜率大于零的直线过D(-1,0)与椭圆交于E,F两点,若,求直线EF的方程; (3)是否存在实数k,直线y=kx+2交椭圆于P,Q两点,以PQ为直径的圆过点D(-1,0)?若存在,求出k的值;若不存在,请说明理由. |
21. 难度:中等 | |
已知的图象在点(1,f(1))处的切线斜率为2. (1)求a,b满足的关系式; (2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围. |
22. 难度:中等 | |
如图,⊙O是△ABC的外接圆,D是弧AC的中点,BD交AC于E. (I)求证:CD2=DE•DB. (II)若CD=2O到AC的距离为1,求⊙O的半径. |
23. 难度:中等 | |
已知直线l经过点P(1,1),倾斜角, (1)写出直线l的参数方程; (2)设l与圆x2+y2=4相交与两点A,B,求点P到A,B两点的距离之积. |
24. 难度:中等 | |
选修4-5:不等式选讲 设正有理数x是的一个近似值,令y=1+. (Ⅰ)若x,求证:y<; (Ⅱ)求证:y比x更接近于. |