相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2020届广东省佛山市顺德区高三第一次教学质量检测数学理科试卷
一、单选题
详细信息
1. 难度:简单

,则(  )

A. B.1 C. D.3

 

详细信息
2. 难度:中等

设集合,若,则的取值范围为(  )

A.  B.

C.  D.

 

详细信息
3. 难度:中等

若曲线关于点对称,则(  )

A. B. C. D.

 

详细信息
4. 难度:中等

,则下列不等式一定成立的是(  )

A.  B.

C.  D.

 

详细信息
5. 难度:中等

如图,是圆的一条直径,是半圆弧的两个三等分点,则(  )

A. B. C. D.

 

详细信息
6. 难度:困难

17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角为的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,.根据这些信息,可得(  )

A. B. C. D.

 

详细信息
7. 难度:困难

若函数上的最大值为4,则的取值范围为(  )

A.  B.  C.  D.

 

详细信息
8. 难度:困难

如图,圆的部分圆弧在如图所示的网格纸上(小正方形的边长为1),图中直线与圆弧相切于一个小正方形的顶点,若圆经过点,则圆的半径为(  )

A.  B. 8 C.  D. 10

 

详细信息
9. 难度:简单

为了配平化学方程式,某人设计了一个如图所示的程序框图,则①②③处应分别填入(   

A. B.

C. D.

 

详细信息
10. 难度:中等

2019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元.若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为(  )

A.20.5 B.21元 C.21.5元 D.22元

 

详细信息
11. 难度:困难

在正方体中,分别为的中点,现有下面三个结论:①为正三角形;②异面直线所成角为;③平面.其中所有正确结论的编号是(  )

A.  B. ②③ C. ①② D. ①③

 

详细信息
12. 难度:困难

函数在区间上的零点个数为(  )

A. 2 B. 3 C. 4 D. 5

 

二、填空题
详细信息
13. 难度:简单

随着互联网的发展,网购早已融入人们的日常生活.网购的苹果在运输过程中容易出现碰伤,假设在运输中每箱苹果出现碰伤的概率为0.7,每箱苹果在运输中互不影响,则网购2箱苹果恰有1箱在运输中出现碰伤的概率为_________.

 

详细信息
14. 难度:中等

分别为内角的对边.已知,则______.

 

详细信息
15. 难度:中等

已知直线与双曲线的一条渐近线交于点,双曲线的左、右顶点分别为,若,则双曲线的离心率为_____.

 

详细信息
16. 难度:困难

如图,在四棱锥中,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.

 

三、解答题
详细信息
17. 难度:中等

在公差为的等差数列中,,且.

(1)求的通项公式;

(2)若成等比数列,求数列的前项和.

 

详细信息
18. 难度:中等

如图,在三棱柱中,侧面为菱形,的中点,为等腰直角三角形,,且.

(1)证明:平面.

(2)求与平面所成角的正弦值.

 

详细信息
19. 难度:中等

某市为了解本市1万名小学生的普通话水平,在全市范围内进行了普通话测试,测试后对每个小学生的普通话测试成绩进行统计,发现总体(这1万名小学生普通话测试成绩)服从正态分布.

(1)从这1万名小学生中任意抽取1名小学生,求这名小学生的普通话测试成绩在内的概率;

(2)现在从总体中随机抽取12名小学生的普通话测试成绩,对应的数据如下:50,52,56,62,63,68,65,64,72,80,67,90.从这12个数据中随机选取4个,记表示大于总体平均分的个数,求的方差.

参考数据:若,则.

 

详细信息
20. 难度:困难

已知椭圆的长轴长为,焦距为2,抛物线的准线经过椭圆的左焦点.

1)求椭圆与抛物线的方程;

2)直线经过椭圆的上顶点且与抛物线交于两点,直线与抛物线分别交于点(异于点),(异于点),证明:直线的斜率为定值.

 

详细信息
21. 难度:困难

已知函数.

(1)讨论的单调性.

(2)试问是否存在,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.

 

详细信息
22. 难度:中等

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)求曲线的极坐标方程;

(2)已知为锐角,直线与曲线的交点为(异于极点),与曲线的交点为,若,求的直角坐标方程.

 

详细信息
23. 难度:困难

已知为正数,且满足.

(1)证明:.

(2)证明:.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.