1. 难度:中等 | |
设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a= . |
2. 难度:中等 | |
设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为 . |
3. 难度:中等 | |
盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是 |
4. 难度:中等 | |
某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度小于20mm. |
5. 难度:中等 | |
设函数f(x)=x(ex+ae-x)(x∈R)是偶函数,则实数a= |
6. 难度:中等 | |
在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是 |
7. 难度:中等 | |
如图是一个算法的流程图,则输出S的值是 |
8. 难度:中等 | |
函数y=x2(x>0)的图象在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5= |
9. 难度:中等 | |
在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是 . |
10. 难度:中等 | |
定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为 . |
11. 难度:中等 | |
已知函数,则满足不等式f(1-x2)>f(2x)的x的范围是 . |
12. 难度:中等 | |
设实数x,y满足3≤xy2≤8,4≤≤9,则的最大值是 . |
13. 难度:中等 | |
在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是 . |
14. 难度:中等 | |
将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是 . |
15. 难度:中等 | |
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1). (1)求以线段AB、AC为邻边的平行四边形两条对角线的长; (2)设实数t满足()•=0,求t的值. |
16. 难度:中等 | |
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°. (1)求证:PC⊥BC; (2)求点A到平面PBC的距离. |
17. 难度:中等 | |
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β. (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α-β最大? |
18. 难度:中等 | |
在平面直角坐标系xoy中,如图,已知椭圆的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0. (1)设动点P满足PF2-PB2=4,求点P的轨迹; (2)设,求点T的坐标; (3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关). |
19. 难度:中等 | |
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列是公差为d的等差数列. (1)求数列{an}的通项公式(用n,d表示); (2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为. |
20. 难度:中等 | |
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=,其中b为实数. (1)求证:函数f(x)具有性质P(b); (2)求函数f(x)的单调区间. |
21. 难度:中等 | |
本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC. B:在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值. C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值. D:设a、b是非负实数,求证:. |
22. 难度:中等 | |
某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立. (1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率. |
23. 难度:中等 | |
已知△ABC的三边长都是有理数. (1)求证cosA是有理数; (2)求证:对任意正整数n,cosnA是有理数. |