如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
⑴求点C的坐标.
⑵当0<t<5时,求S与t之间的函数关系式.
⑶求⑵中S的最大值.
⑷当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
已知一次函数和反比例函数的图象交于点A(1,1).
⑴求两个函数的解析式;
⑵若点B是轴上一点,且△AOB是直角三角形,求B点的坐标.
如图是某人在方格纸中设计图案的一部分,请你帮他完成余下的工作:
(1)作出关于直线AB对称的图形;
(2)将你画出的部分连同原图形绕点O逆时针旋转90°.
(两道小题分别在下面两图中完成,不用写作法)
(本小题满分10分)
北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.
⑴该商场两次共购进这种运动服多少套?
⑵如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)
在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).
⑴小明的这三件文具中,可以看做是轴对称图形的是___________(填字母代号);
⑵小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?
如图所示,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE. 求证:△ABE∽△ADC .