如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边△CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(x﹣m)2+n经过点E.⊙M与x轴、直线AB都相切,其半径为3(1﹣)a.
(1)求点A的坐标和∠ABO的度数;
(2)当点C与点A重合时,求a的值;
(3)点C移动多少秒时,等边△CDE的边CE第一次与⊙M相切?
如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为的点P.
(1)分解因式:;
(2)先化简,再求值:,其中.
图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t(分钟)之间的关系图像.
(1)从图像知,通话2分钟需付的电话费是 元;
(2)当t≥3时求出该图像的解析式(写出求解过程);
(3)通话7分钟需付的电话费是多少元?
将长为1,宽为a的长方形纸片如图左那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图右那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作).
(1)第一次操作后,剩下的长方形的长和宽分别为多少?(用含a的代数式表示)
(2)第二次操作后,剩下的长方形的面积是多少?(列出代数式,不需化简)
(3)假如第二次操作后,剩下的长方形恰好是正方形,则a的值是多少?