满分5 > 初中数学试题 >

如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH...

如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有( )
manfen5.com 满分网
A.①②③
B.①②④
C.①③④
D.①②③④
(1)作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH; (2)由FH⊥AE,AF=FH,可得:∠HAE=45°; (3)作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;(4)作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长,为定值. 【解析】 (1)连接FC,延长HF交AD于点L, ∵BD为正方形ABCD的对角线, ∴∠ADB=∠CDF=45°. ∵AD=CD,DF=DF, ∴△ADF≌△CDF. ∴FC=AF,∠ECF=∠DAF. ∵∠ALH+∠LAF=90°, ∴∠LHC+∠DAF=90°. ∵∠ECF=∠DAF, ∴∠FHC=∠FCH, ∴FH=FC. ∴FH=AF. (2)∵FH⊥AE,FH=AF, ∴∠HAE=45°. (3)连接AC交BD于点O,可知:BD=2OA, ∵∠AFO+∠GFH=∠GHF+∠GFH, ∴∠AFO=∠GHF. ∵AF=HF,∠AOF=∠FGH=90°, ∴△AOF≌△FGH. ∴OA=GF. ∵BD=2OA, ∴BD=2FG. (4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC, 根据△MEC≌△CIM,可得:CE=IM, 同理,可得:AL=HE, ∴HE+HC+EC=AL+LI+IM=AM=8. ∴△CEH的周长为8,为定值. 故(1)(2)(3)(4)结论都正确. 故选D.
复制答案
考点分析:
相关试题推荐
如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有( )
manfen5.com 满分网
A.1个
B.2个
C.3个
D.4个
查看答案
下列各句判定矩形的说法( 1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个角是直角的四边形是矩形;是正确有几个( )
A.2个
B.3个
C.4个
D.5个
查看答案
下列说法中错误的是( )
A.两条对角线互相平分的四边形是平行四边形
B.两条对角线相等的四边形是矩形
C.两条对角线互相垂直的矩形是正方形
D.两条对角线相等的菱形是正方形
查看答案
菱形的两条对角线的长分别是10和24,则这个菱形的周长是( )
A.24
B.52
C.10
D.34
查看答案
一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米( )
A.50
B.50或40
C.50或40或30
D.50或30或20
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.