如图,是的直径,点是上一点,与过点的切线垂直,垂足为点,直线与的延长线相交于点,弦平分,交点,连接.
(1)求证:平分;
(2)求证:;
(3)若,,求线段的长.
如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.
(1)线段BE与AF的位置关系是 ,= .
(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.
(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.
如图,平行四边形的对角线,经过、、三点.
(1)判断直线与的位置关系,并说明理由;
(2)若点在优弧上,连接、,且,,求的正弦值.
我县在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)
(1)请直接写出y与x之间的函数关系式;
(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线.
(1)求抛物线的解析式(化为一般式);
(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.
若是关于的一元二次方程的一个解,求的值及方程的另一个解.