满分5 > 初中数学试题 >

某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1...

某商城销售A,B两种自行车.A型自行车售价为2 100/辆,B型自行车售价为1 750/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.

(1)求每辆A,B两种自行车的进价分别是多少?

(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.

 

(1)每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元. 【解析】 (1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意列出方程,求出方程的解即可得到结果;  (2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可. (1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元, 根据题意,得=, 解得x=1600, 经检验,x=1600是原方程的解, x+400=1 600+400=2 000, 答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元; (2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000, 根据题意,得, 解得:33≤m≤40, ∵m为正整数, ∴m=34,35,36,37,38,39,40. ∵y=﹣50m+15000,k=﹣50<0, ∴y随m的增大而减小,∴当m=34时,y有最大值, 最大值为:﹣50×34+15000=13300(元). 答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
复制答案
考点分析:
相关试题推荐

在等腰RtABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点CCEAD于点E.

(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;

(2)如图2,过点CCFCE,且CF=CE,连接FE并延长交AB于点M,连BF,求证:AM=BM.

 

查看答案

A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的st的关系.

(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?

(2)汽车B的速度是多少?

(3)求L1,L2分别表示的两辆汽车的st的关系式.

(4)2小时后,两车相距多少千米?

(5)行驶多长时间后,A、B两车相遇?

 

查看答案

某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中公交车对应的扇形圆心角为60°,“自行车对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.

(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?

(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?

 

查看答案

如图1,在平面直角坐标系xOy中,直线lx轴、y轴分别交于点A和点B0,﹣1),抛物线经过点B,且与直线l的另一个交点为C4n).

1)求n的值和抛物线的解析式;

2)点D在抛物线上,且点D的横坐标为t0t4).DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求pt的函数关系式以及p的最大值;

3M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点AOB的对应点分别是点A1O1B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.

 

查看答案

图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上

(1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1

(2)画出将△ABC向右平移6个单位后得到的△A2B2C2

(3)在(1)中,求在旋转过程中△ABC扫过的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.