平行四边形的一条对角线长为10,则它的一组邻边可能是( )
A.4和6 B.2和12 C.4和8 D.4和3
如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与B、C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;
(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大?若存在,求m的值和△BNC的面积;若不存在,说明理由
九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A、B两点.
(1)求A、B、C三点的坐标;
(2)求过A、B、C三点的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位长度.
如图,矩形ABCD的两边长,,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动当Q到达C点时,P、Q停止运动设运动时间为x秒,的面积为
求y关于x的函数关系式,并写出x的取值范围;
求的面积的最大值.
已知二次函数的图象与轴两交点的坐标分别为(,0),(,0)().
(1)证明;
(2)若该函数图象的对称轴为直线,试求二次函数的最小值.