如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.
(1)求DE与水平桌面(AB所在直线)所成的角;
(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).
(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
课本中有一个例题:
有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?
这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.
我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:
(1)若AB为1m,求此时窗户的透光面积?
(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元
(1)设每件涨价x元,则每星期实际可卖出 件,每星期售出商品的利润y为 元.x的取值范围是 ;
(2)设每件降价m元,则每星期售出商品的利润w为 元;
(3)在涨价的情况下,如何定价才能使每星期售出商品的利润最大?最大利润是多少?
如图,已知反比例函数y=(k≠0)的图象与一次函数y=k'x+b(k'≠0)的图象相交于A和B两点。
(1)求反比例函数和一次函数的表达式;
(2)观察两函数在同一坐标系中的图象,直接写出关于x的不等式<k'x+b的解集;
(3)求△AOB的面积.(其中O为坐标原点)
抛物线上部分点的横坐标,纵坐标的对应值如下表:
… | … | ||||||
… | … |
根据上表填空:
①抛物线与轴的交点坐标是________和________;
②抛物线经过点 ,________;
③在对称轴右侧,随增大而________;
试确定抛物线的解析式.
计算.
(1)2cos60°+4sin60°tan30°-cos45°
(2)