满分5 > 初中数学试题 >

如图,△ABC是等边三角形,D、E分别是BC和CB延长线上的点,且,连接AD、A...

如图,△ABC是等边三角形,DE分别是BCCB延长线上的点,且,连接ADAEBMCN分别是△ABE和△ACD的高线,垂足分别为MN BGCH分别是∠ABE和∠ACD的平分线,分别交AEAD于点GH.

证明:(1)ABE∽△DCA;

(2)sinMBG=sinNCH.

 

(1)见解析;(2)见解析. 【解析】 (1)由两组对边成比例且夹角相等易证△ABE∽△DCA; (2)由△ABE∽△DCA可得∠E=∠CAD,由互余关系可得∠EBM=∠ACN,再根据角平分线得到∠EBG=∠ACH,角度作差可得∠MBG=∠NCH,即可得证. 证明:(1)∵△ABC是等边三角形 ∴∠ABC=∠ACB=60° ∴∠ABE=∠DCA=120° 又∵ ∴△ABE∽△DCA (2)∵BM、CN分别是△ABE和△ACD的高线, 即BM⊥AE,CN⊥AD ∴∠EBM+∠E=90°,∠ACN+∠CAD=90°, ∵△ABE∽△DCA ∴∠E=∠CAD ∴∠EBM=∠ACN 又∵BG平分∠ABE,CH平分∠ACD,且∠ABE=∠ACD=120° ∴∠EBG=∠ACH=60° ∴∠EBG-∠EBM=∠ACH-∠ACN,即∠MBG=∠NCH ∴sin∠MBG=sin∠NCH
复制答案
考点分析:
相关试题推荐

公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的赵爽弦图如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,其中直角三角形中较大的锐角度数为a.若大正方形的面积为144,小正方形的面积是36,求sina-cosa的值.

 

查看答案

已知在△ABC中,∠C= 90°,∠A、∠B、∠C所对的边分别为abca=c=,解这个直角三角形。

 

查看答案

如图,在边长为1个单位长度的小正方形组成的11×11的网格中,△ABC的顶点都在格点上.

(1)以格点M为位似中心,把△ABC1 : 3放大,在网格图中画出△A1B1C1

(2)(1)的条件下,线段AB的对应线段为A1B1,求△A1B1M的面积.

 

查看答案

计算: .

 

查看答案

如图,抛物线y=ax2+bx+c(a≠0)x轴交于点A(-40)B(10),与y轴交于点C(0-4)P是直线AC下方抛物线上的点,若△ACP的面积为6,则tanAOP的值为_____________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.