若复数(i为虚数单位是纯虚数,则实数的值为 ▲ .
已知函数.
(Ⅰ)若有两个不同的解,求的值;
(Ⅱ)若当时,不等式恒成立,求的取值范围;
(Ⅲ)求在上的最大值.
已知椭圆:的左、右焦点分别为,下顶点为,点是椭圆上任一点,⊙是以为直径的圆.
(Ⅰ)当⊙的面积为时,求所在直线的方程;
(Ⅱ)当⊙与直线相切时,求⊙的方程;
(Ⅲ)求证:⊙总与某个定圆相切.
某广告公司为2010年上海世博会设计了一种霓虹灯,样式如图中实线部分所示. 其上部分是以为直径的半圆,点为圆心,下部分是以为斜边的等腰直角三角形,是两根支杆,其中米,. 现在弧、线段与线段上装彩灯,在弧、弧、线段与线段上装节能灯. 若每种灯的“心悦效果”均与相应的线段或弧的长度成正比,且彩灯的比例系数为,节能灯的比例系数为,假定该霓虹灯整体的“心悦效果”是所有灯“心悦效果”的和.
(Ⅰ)试将表示为的函数;
(Ⅱ)试确定当取何值时,该霓虹灯整体的“心悦效果”最佳?
设数列的前项和,数列满足.
(Ⅰ)若成等比数列,试求的值;
(Ⅱ)是否存在,使得数列中存在某项满足成等差数列?若存在,请指出符合题意的的个数;若不存在,请说明理由.
设的三个内角所对的边分别为,且满足.
(Ⅰ)求角的大小;
(Ⅱ)若,试求的最小值.