(12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为每小时2元(不足1小时的部分按1小时计算)。甲、乙独立地来该租车点租车骑游。设甲、乙不超过两小时还车的概率分别为; ;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。
(Ⅰ)求出甲、乙所付租车费用相同的概率;
(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;
(12分)已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点
(Ⅰ)求证:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的长
(12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据分析,是否有把握认为收看新闻节目的观众与年龄有关?w. k#s5_u.c o*m
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率。
附:
随机变量的概率分布:
(10分)已知数列{ },其前n项和满足(是大于0的常数),且,.
(Ⅰ)求的值;
(Ⅱ)求数列{}的通项公式
在平面直角坐标系中,为坐标原点。定义、两点之间的“直角距离”为.若点,则= ;
已知点,点M是直线上的动点,的最小值为 .
马老师从课本上抄录一个随机变量的概率分布律如下表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。据此,小牛给出了正确答案 。