已知x = 4是函数的一个极值点,(,b∈R).
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有3个不同的零点,求的取值范围.
已知抛物线C的方程C:y 2 =2 p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线
OA与l 的距离等于?若存在,求出直线l的方程;若不存在,说明理由
已知数列和中,数列的前项和记为. 若点在函数的图象上,点在函数的图象上。
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前项和
已知,函数(R).
(1)求; (2)求的最小正周期和最大值;
(3)若为锐角,且,求的值
已知直线及圆
(1) 若直线l与圆C相切,求a的值;
(2) 若直线l与圆C相交于A,B两点,且弦AB的长为,求a的值.
从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)估计成绩在[60,90)分的学生比例.