(本题8分)如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE (2)平面PAC平面BDE
(本题6分)已知圆台的母线长为4 cm,母线与轴的夹角为30°,上底面半径是下底面半径的,求这个圆台的侧面积.
(本题6分)已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S。
如图所示,等边△ABC的边长为4,D为BC中点,沿AD把△ADC折叠到△ADC′处,
使二面角B-AD-C′为60°,则折叠后二 面角A-BC′-D的正切值为________.
如图,正方体ABCD—A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:①点H是△A1BD的中心;②AH垂直于平面CB1D1;
③AC1与B1C所成的角是90°,其中正确命题的序号是________.
已知一个球的球心到过球面上A、B、C三点的截面的距离等于此球半径的一半,若,则球的体积为 .