执行如图所示的程序框图,若输入
A. B. C. D.
已知函数(为自然对数的底数)
(Ⅰ)若曲线在点处的切线平行于轴,求的值;
(Ⅱ)求函数的极值;
(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.
如图,在等腰直角中,,,点在线段上.
(Ⅰ) 若,求的长;
(Ⅱ)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.
如图,抛物线的焦点为F,准线与x轴的交点为A.点C在抛物线E上,以C为圆心,为半径作圆,设圆C与准线交于不同的两点M,N.
(I)若点C的纵坐标为2,求;
(II)若,求圆C的半径.
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:分别加以统计,得到如图所示的频率分布直方图.
(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(II)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
0.100 |
0.050 |
0.010 |
0.001 |
|
k |
2.706 |
3.841 |
6.635 |
10.828 |
25周岁以上组 25周岁以下组
如图,在四棱柱
(I)当正视方向与向量的方向相同时,画出四棱锥的正视图(要求标出尺寸,并写出演算过程);
(II)若M为PA的中点,求证:求二面角
(III)求三棱锥的体积.