满分5 > 高中数学试题 >

在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭...

在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆manfen5.com 满分网的左、右焦点.已知△F1PF2为等腰三角形.
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足manfen5.com 满分网,求点M的轨迹方程.
(Ⅰ)直接利用△F1PF2为等腰三角形得|PF2|=|F1F2|,解其对应的方程即可求椭圆的离心率e; (Ⅱ)先把直线方程与椭圆方程联立,求得A,B两点的坐标,代入,即可求点M的轨迹方程. 【解析】 (Ⅰ)设F1(-c,0),F2(c,0)(c>0). 由题得|PF2|=|F1F2|,即=2c,整理得2+-1=0,得=-1(舍),或=, 所以e=. (Ⅱ)由(Ⅰ)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程为y=(x-c). A,B的坐标满足方程组, 消y并整理得5x2-8xc=0, 解得x=0,x=,得方程组的解为,, 不妨设A(c,c),B(0,-c). 设点M的坐标为(x,y),则=(x-c,y-c),=(x,y+c) 由y=(x-c)得c=x-y  ①, 由=-2即(x-c)x+(y-c)(y+c)=-2. 将①代入化简得18x2-16xy-15=0,⇒y=代入①化简得c=>0.所以x>0, 因此点M的轨迹方程为18x2-16xy-15=0  (x>0).
复制答案
考点分析:
相关试题推荐
如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,manfen5.com 满分网,C1H⊥平面AA1B1B,且manfen5.com 满分网
(Ⅰ)求异面直线AC与A1B1所成角的余弦值;
(Ⅱ)求二面角A-A1C1-B1的正弦值;
(Ⅲ)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.

manfen5.com 满分网 查看答案
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,
(i)摸出3个白球的概率;
(ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的定义域与最小正周期;
(Ⅱ)设manfen5.com 满分网,若manfen5.com 满分网,求α的大小.
查看答案
已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则manfen5.com 满分网的最小值为    查看答案
已知集合A={x∈R||x+3|+|x-4|≤9},B=manfen5.com 满分网,则集合A∩B=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.