满分5 > 高中数学试题 >

如图,已知椭圆C过点M(2,1),两个焦点分别为,O为坐标原点,平行于OM的直线...

如图,已知椭圆C过点M(2,1),两个焦点分别为manfen5.com 满分网,O为坐标原点,平行于OM的直线l交椭圆C于不同的两点A、B,
(Ⅰ)求椭圆C的方程;
(Ⅱ)试问直线MA、MB的斜率之和是否为定值,若为定值,求出以线段AB为直径且过点M的圆的方程;若不存在,说明理由.

manfen5.com 满分网
(Ⅰ)由题设知半焦距,长半轴长,短半轴长,由此能得到椭圆C的方程. (Ⅱ)设直线l的方程为,A(x1,y1),B(x2,y2),,由知x2+2mx+2m2-4=0,得x1+x2=-2m,x1x2=2m2-4.由此入手能够求出圆的方程. 【解析】 (Ⅰ)由题设知:半焦距, 长半轴长, 短半轴长,于是椭圆C的方程是:; (Ⅱ)设直线l的方程为,A(x1,y1),B(x2,y2) 由知x2+2mx+2m2-4=0,得x1+x2=-2m,x1x2=2m2-4; ∴为定值; 由线段AB为直径且过点M的圆知:MA⊥MB有kMA•kMB=-1,得kMA=1,kMB=-1; ∴,又x1+x2=-2m;得; ∴,圆的方程为: 即:.
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD,PA⊥平面ABCD,且PA=4,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,manfen5.com 满分网,M、N分别为PD、PB的中点,平面MCN与PA的交点为Q
(Ⅰ)求PQ的长度;
(Ⅱ)求截面MCN与底面ABCD所成二面角的大小;
(Ⅲ)求四棱锥A-MCNQ的体积.

manfen5.com 满分网 查看答案
庐山是我国四大名山之一,从石门涧可徒步攀登至山顶主景区,沿途风景秀丽,右图是从石门涧上山的旅游示意图,若游客在每一分支处选择哪一条路上山是等可能的(认定游客是始终沿上山路线,不往下走,例到G后不会往E方向走).
(l)茌游客已到达A处的前提下,求经过点F的概率;
(2)在旺季七月份,每天约有1200名游客需由石门涧登山,石门涧景区决定在C、F、G处设售水点,若每位游客在到达C、F、G处条件下买水的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则景区每天至少供应多少瓶水是合理的?

manfen5.com 满分网 查看答案
如图,A是单位圆与x轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),manfen5.com 满分网,四边形OAQP的面积为S.
(1)求manfen5.com 满分网的最大值及此时θ的值θ
(2)设点B的坐标为manfen5.com 满分网,∠AOB=α,在(1)的条件下求cos(α+θ).

manfen5.com 满分网 查看答案
(选做题)(坐标系与参数方程)曲线manfen5.com 满分网(α为参数)与曲线ρ2-2ρcosθ=0的直角坐标方程分别为        ,两条曲线的交点个数为    个. 查看答案
(选做题)(几何证明选讲)如图所示,过圆C外一点P做一条直线与圆C交于A,B两点,BA=2AP,PT与圆C相切于T点.
已知圆C的半径为2,∠CAB=30°,则PT=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.