满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(...

设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=manfen5.com 满分网,求数列{cn}的前n项和Tn
(I)由已知利用递推公式可得an,代入分别可求数列bn的首项b1,公比q,从而可求bn (II)由(I)可得cn=(2n-1)•4n-1,利用乘“公比”错位相减求和. 【解析】 (1):当n=1时,a1=S1=2;当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2, 故{an}的通项公式为an=4n-2,即{an}是a1=2,公差d=4的等差数列. 设{bn}的通项公式为q,则b1qd=b1,d=4,∴q=. 故bn=b1qn-1=2×,即{bn}的通项公式为bn=. (II)∵cn===(2n-1)4n-1, Tn=c1+c2+…+cn Tn=1+3×41+5×42+…+(2n-1)4n-1 4Tn=1×4+3×42+5×43+…+(2n-3)4n-1+(2n-1)4n 两式相减得,3Tn=-1-2(41+42+43+…+4n-1)+(2n-1)4n=[(6n-5)4n+5] ∴Tn=[(6n-5)4n+5]
复制答案
考点分析:
相关试题推荐
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知向量manfen5.com 满分网=(cosα,sinα),manfen5.com 满分网=(cosβ,sinβ),|manfen5.com 满分网-manfen5.com 满分网|=manfen5.com 满分网
(1)求cos(α-β)的值;
(2)若0<α<manfen5.com 满分网,-manfen5.com 满分网<β<0,且sinβ=-manfen5.com 满分网,求sinα的值.
查看答案
设函数f(x)=sinx-cosx+x+1,0<x<2π,求函数f(x)的单调区间与极值.
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列,则数列{an}的通项公式为    .(用n,d表示). 查看答案
已知函数manfen5.com 满分网定义域是[a,b](a,b∈Z),值域是[-1,0],则满足条件的整数对(a,b)有     对. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.