满分5 > 高中数学试题 >

某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生...

某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数分组低碳族
的人数
占本组
的频率
1[25,30)1200.6
2[30,35)195P
3[35,40)1000.5
4[40,45)a0.4
5[45,50)300.3
6[50,55)150.3
(1)请补全频率分布直方图,并求n、a、p的值;
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.

manfen5.com 满分网
(I)由题意及统计图表,利用图表性质得第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,在有频率定义知高为,在有频率分布直方图会全图形即可; (II)由题意及(I)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,并且由题意分出随机变量X服从超几何分布,利用分布列定义可以求出分布列,并利用分布列求出期望. 【解析】 (Ⅰ)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为. 频率直方图如下: 第一组的人数为,频率为0.04×5=0.2,所以. 由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以. 第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60. (Ⅱ)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人. 随机变量X服从超几何分布.,,,. 所以随机变量X的分布列为 X 1 2 3 P ∴数学期望.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.
(Ⅰ)试求{an}的通项公式;
(Ⅱ)若数列{bn}满足:manfen5.com 满分网(n∈N*),试求{bn}的前n项和公式Tn
查看答案
设函数f(x)=manfen5.com 满分网(x>0),观察:
 f1(x)=f(x)=manfen5.com 满分网
 f2(x)=f(f1(x))=manfen5.com 满分网
 f3(x)=f(f2(x))=manfen5.com 满分网
 f4(x)=f(f3(x))=manfen5.com 满分网

根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=    查看答案
函数f(x)=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则manfen5.com 满分网的最小值为    查看答案
manfen5.com 满分网如图,EFGH 是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该院内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)=    ;           
(2)P(B|A)=    查看答案
已知manfen5.com 满分网,则manfen5.com 满分网的展开式中的常数项为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.