已知n是正整数,在数列{a
n}中,a
1=1,a
n+1=2a
n+1,在数列{b
n}中,b
1=a
1,
当n≥2时,
=
+
+…+
.
(I)求数列{a
n}的通项公式:
(II)求
-
的值:
(III)当n≥2时,证明:
.
考点分析:
相关试题推荐
设椭圆C:
(a,b>0)的左、右焦点分别为F
1,F
2,若P 是椭圆上的一点,
,离心率
.
(1)求椭圆C的方程;
(2)若P 是第一象限内该椭圆上的一点,
,求点P的坐标;
(3)设过定点P(0,2)的直线与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
查看答案
已知函数
.
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a-1)成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e
-1,e]上有两个零点,求实数b的取值范围.
查看答案
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
查看答案
盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(Ⅰ)求随机变量ξ的分布列;
(Ⅱ)求随机变量ξ的期望Eξ.
查看答案
已知函数
,且给定条件p:“
”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)-m|<2“且p是q的充分条件,求实数m的取值范围.
查看答案