满分5 > 高中数学试题 >

如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90...

如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥侧面BB1CC1
(1)求直线C1B与底面ABC所成角的正弦值;
(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(3)在(2)的条件下,若AB=manfen5.com 满分网,求二面角A-EB1-A1的大小.

manfen5.com 满分网
(1)求出平面的法向量与直线所在的向量,利用向量的有关运算求出两个向量的夹角,进而转化为线面角即可. (2)根据点的特殊位置设出点的坐标为E(1,y,0),再利用向量的基本运算证明两个向量垂直即可证明两条直线相互垂直. (3)结合题意求出两个平面的法向量求出两个法向量的夹角,再转化为两个平面的二面角即可. 【解析】 如图,以B为原点建立空间直角坐标系,则B(0,0,0),C1(1,2,0),B1(0,2,0) (1)直三棱柱ABC-A1B1C1中, 平面ABC的法向量,又, 设BC1与平面ABC所成角为θ ,则. (2)设E(1,y,0),A(0,0,z),则, ∵EA⊥EB1, ∴ ∴y=1,即E(1,1,0)所以E为CC1的中点. (3)∵A(0,0,),则, 设平面AEB1的法向量m=(x1,y1,z1), 则∴, 取, ∵, ∴BE⊥B1E,又BE⊥A1B1∴BE⊥平面A1B1E, ∴平面A1B1E的法向量, ∴, ∴二面角A-EB1-A1为45°.
复制答案
考点分析:
相关试题推荐
甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>manfen5.com 满分网),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为manfen5.com 满分网
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
查看答案
在数列{an}中,manfen5.com 满分网(c为常数,n∈N*,n≥2),又a1,a2,a5成公比不为l的等比数列.
(I)求证:{manfen5.com 满分网}为等差数列,并求c的值;
(Ⅱ)设{bn}满足manfen5.com 满分网,证明:数列{bn}的前n项和manfen5.com 满分网
查看答案
已知manfen5.com 满分网,且f(x)=manfen5.com 满分网
(I)求f(x)的最小正周期及单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若(a+2c)cosB=-bcosA成立,求f(A)的取值范围.
查看答案
已知曲C的极坐标方程ρ=2sinθ,设直线L的参数方程manfen5.com 满分网,(t为参数)设直线L与x轴的交点M,N是曲线C上一动点,求|MN|的最大值    查看答案
(选修4-1:几何证明选讲)如图,已知C点在⊙O直径BE的延长线上,CA切⊙O于A点,CD是∠ACB的平分线且交AB于点D.则∠ADC的度数是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.